Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cement Raw Meal Analysis by Pressed Powder Method on the ZSX Primus III+

Published: Friday, December 14, 2012
Last Updated: Friday, December 14, 2012
Bookmark and Share
Rigaku’s new application report on the Rigaku ZSX Primus III+ WDXRF spectrometer.

Rigaku Corporation has announced the publication of a new application report on the Rigaku ZSX Primus III+ wavelength dispersive X-ray fluorescence (WDXRF) spectrometer.

Rigaku Application Note XRF 5006 addresses quantitative analysis for cement raw meal by the pressed powder method, including details for sample preparation, method calibration and repeatability.

Cement is one of the most important materials used in construction.

Different kinds of hydraulic cements, including Portland cement, have varying physical properties that are produced by changing the mineral composition of clinker.

It is, therefore, important to control the chemical composition of cement and interim products. Because of the nature of raw meal and the challenges it presents to chemical analysis, WDXRF has become a prevalent analytical technique in cement plants.

The pressed powder method is the most common sample preparation technique in X-ray fluorescence (XRF) because it does not require an expensive flux, a fusion machine, or highly trained operators.

The report demonstrates that cement raw meal samples can be routinely analyzed by the pressed powder method with excellent accuracy and precision on the Rigaku ZSX Primus III+ WDXRF spectrometer.

Measurements were performed on the ZSX Primus III+ with a 3 kW Rh-target X-ray tube. The ZSX Primus III+ is a tube-above sequential WDXRF spectrometer optimized for routine analyses in powder sample analysis.

The RX25 multilayer analyzing crystal, included in the standard configuration, has high sensitivity for Mg and Na and is capable of eliminating higher-order lines such as Ca-Kα-3rd, which would interfere with Mg-Kα.

The tube-above optics, programmable vacuum speed and powder trap of the ZSX Primus III+ enable secure analysis of powder samples and low frequency of maintenance by preventing pressed pellet samples from breaking and falling, and by protecting the vacuum pump and magnetic valves from fine particles scattered from samples.

For this analysis, one of the reference materials used for the calibration was measured consecutively 10 times to demonstrate the performance and short-term stability of the instrument.

On the ZSX Primus III+, a sample is evacuated in the pre-evacuation chamber and then transported into the measurement position.

During the measurement cycle of one sample, the next sample to be analyzed can be loaded into the pre-evacuation chamber, which reduces the analysis time and prevents contamination of the optical main chamber.

The results show that cement raw meal samples can be routinely analyzed with simple sample preparation and high accuracy and precision on the ZSX Primus III+ by the pressed powder method.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Rigaku Raman Technologies Announces Rebrand to Rigaku Analytical Devices
Rigaku Analytical Devices sets benchmark in spectroscopy industry with portfolio of powerful customizable handheld and portable spectroscopic analyzers.
Friday, June 05, 2015
Rebrand for Rigaku Raman Technologies
Rigaku Raman Technologies has announced it will formally operate as Rigaku Analytical Devices.
Monday, June 01, 2015
Rigaku Announce New President & COO
Company appoints Mr. Yoichi Yokomizo as Chief Operating Officer of RAH.
Tuesday, April 07, 2015
Analysis of Sulfur and Chlorine in Oil by Energy Dispersive X-ray Fluorescence
Monitoring the sulfur and chlorine content is critical in the production of various oils and oil products.
Wednesday, May 15, 2013
Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
“Golden Window” in Deep Brain Imaging Opened
The neuroscience community is saluting the creation of a “Golden Window” for deep brain imaging by researchers at The City College of New York led by biomedical engineer Lingyan Shi.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Human Dark Proteome Initiative Launched
Group to focus on advancing research on intrinsically disordered proteins to better understand catastrophic diseases.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Studying Bowel Disease With Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos