Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

AFM-IR Publication Makes the Cover of December’s Issue of Applied Spectroscopy

Published: Thursday, December 20, 2012
Last Updated: Thursday, December 20, 2012
Bookmark and Share
Journal describes the highlighted Focal Point article for the final issue of 2012.

Anasys Instruments' latest review paper on nanoscale AFM-IR chosen for the cover position of Applied Spectroscopy.

The Society for Applied Spectroscopy features a new review paper on the combining of atomic force microscopy and infrared spectroscopy on the cover of its flagship journal, Applied Spectroscopy, December 2012.

The journal describes the highlighted Focal Point article for their final issue of 2012. This reviews a powerful new capability which enables the chemical characterization of polymeric and biological samples at nanoscale spatial resolutions via infrared (IR) spectroscopy.

The combination of a broadly tunable IR laser source with photothermal detection via the tip of an atomic force microscope (AFM) permits the collection of sub-diffraction-limited IR spectra with band contours identical to those obtained by conventional transmission IR spectroscopy.

The cover images show how the AFM-IR technique is used to acquire IR absorption spectra and absorption images with spatial resolution on the 50-100 nm scale, including the mapping of an IR-absorbing species in a single bacterium cell and the ability to differentiate the chemical composition of individual polymeric domains in a model pharmaceutical formulation.

Finally, it is shown that by controlling the polarization of the IR excitation laser, it is possible to obtain important information regarding the molecular orientation in electrospun nanofibers.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New NIST AFM-IR Publication has Catalysis Research Implications
Anasys Instruments reports on a new publication from their nanoIR users at NIST which assess the chemical composition of a metal-organic framework with nanoscale resolution.
Tuesday, March 25, 2014
Inventor of AFM-IR Technique to Receive Ernst Abbe Memorial Award
Professor Alexandre Dazzi to receive the award for pioneering field of nanoscale IR Spectroscopy.
Wednesday, March 19, 2014
French Researchers to Identify Best Microbes for Biofuel Production
Scientists used atomic force microscopy combined with infrared spectroscopy.
Wednesday, February 19, 2014
Anasys' NIST Users Report on New AFM-IR Nanoscale Chemical Imaging Method
New application for AFM-IR to study in NIST publication "Tech Beat."
Thursday, July 25, 2013
Purdue University Researchers Use Nanoscale IR Spectroscopy via AFM-IR
Utilizing this technique has provided key insights into drug-polymer blends.
Friday, May 11, 2012
Invited Award Symposium Presentation Nanoscale IR Spectroscopy at Pittcon 2012
Anasys Instruments announced that Dr. Bruce Chase is presenting an invited talk entitled "Structure and Orientation in Electrospun Nanofibers", as part of the Organized Contributed Session on Analytical Applications of Broadly Tunable Lasers.
Thursday, March 08, 2012
Anasys Instruments Receives Microscopy Today’s 2011 Innovation Award
AFM-IR system has been recognized by Microscopy Today in the receipt of the 2011 Innovation Award.
Thursday, August 18, 2011
Scientific News
Kwansei Gakuin University in Hyogo, Japan, Uses Raman Microscopy
Raman Microscopy study crystallographic defects in silicon carbide wafers.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Major Innovation in Molecular Imaging Delivers Spatial and Spectral Info Simultaneously
Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases.
Helicobacter Pylori's Secret Weapon
Finding the molecular interactions that make this pathogen so successful in such a harsh environment has, until now, proved elusive.
Unprecedented Insights Into the Reactions Powering Fuel Cells
Nanotech-enabled chip developed at UCLA can analyze chemical reactions more accurately than large machines
Ultrafast Laser Pulses for Spectroscopy and Biomedical Applications
Graphene Flagship researchers have developed an optical fibre laser that emits pulses with durations equivalent to just a few wavelengths of the light used. This fastest ever laser based on graphene will be ideal for use in ultrafast spectroscopy, and in surgical lasers that avoid heat damage to living tissue.
Device May Detect Urinary Tract Infections Faster
A Lab-on-a-Disc platform developed by a German and Irish team of researchers dramatically cut the time to detect bacterial species that cause urinary tract infections -- a major cause of sepsis.
New Hybrid Microscope Offers Unparalleled Capabilities
A microscope being developed at the Department of Energy’s Oak Ridge National Laboratory will allow scientists studying biological and synthetic materials to simultaneously observe chemical and physical properties on and beneath the surface.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!