Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Magnet Sends Lab Capacity ‘Through the Roof’ at Laboratories for Molecular Medicine

Published: Tuesday, February 05, 2013
Last Updated: Tuesday, February 05, 2013
Bookmark and Share
As a crane lowered a powerful 3.8-ton magnet through the roof, Brown began work on deploying a powerful new tool for molecular biology research.

The magnetic field strength is what really matters about Brown’s new Bruker 850 nuclear magnetic resonance spectrometer, but from a visceral standpoint here’s an impressive attribute: It’s so big that delivery today at the Laboratories for Molecular Medicine required lowering it with a crane through a 100-square-foot portal in the roof of the building at 70 Ship St.

“That’s the only way into the building,” said medicine and chemistry Professor Wolfgang Peti. “No door is large enough.”

Elbow Street was closed most of the day to host the crane and the tractor-trailer that hauled the humongous magnet here. It’s about 13 feet tall and nearly five feet in diameter. It weighs more than 7,700 pounds.

But much greater than the $2.9-million magnet itself is the potential of the research it will enable. Its job is to provide the incredibly strong magnetic field used in NMR spectroscopy. The technology allows chemists and biologists to determine the structure and motions of proteins down to the level of their individual atoms. It’s a powerful tool for observing the most fundamental workings of life.

The new magnet’s field strength of 19.97 Tesla vastly exceeds the University’s current NMR spectroscopy magnet, which has a strength of 11.7 Tesla. That means the new instrument will have higher resolution, Peti said. It will be able to produce distinct information from signals that the weaker magnet would have represented as overlapping, and will be able to measure distances of as small as 2 Angstroms (two tenths of a billionth of a meter).

“We can now look at larger biomacromolecules, such as proteins or protein-DNA and protein-RNA complexes,” Peti said. “We have done those kind of measurements at Brandeis University for the last seven years.”

Brown University Provost Mark Schlissel said the magnet is an important investment in research. “In many fields of science, discovery is limited not by creative ideas but rather by access to cutting-edge tools such as the 850 MHz spectrometer now being installed,” Schlissel said. “In this case, anonymous donors who share our vision of enhancing Brown’s impact on society through research provided the resources that allowed my office to support this critical acquisition.”

Brown will now have the second most powerful NMR capability in New England, behind an instrument shared by Harvard and MIT. There are only a few comparable spectrometers in all of the northeast, including the mid-Atlantic region.

It will be installed alongside its smaller, older 11.7-Tesla brother in the Structural Biology Core Facility on the building’s first floor.

The most frequent users are likely to be the University’s core structural biology faculty members: Peti, Gerwald Jogl, Rebecca Page, and Nicolas Fawzi. The search for another junior colleague is underway.

But with full-time, expert facility manager Michael “Sparky” Clarkson on board, Peti said, other faculty members will have expert help using the NMR tools.

The core facility is also available for use beyond Brown, Peti added. The new magnet already has stirred interest among pharmacy researchers at the University of Rhode Island, and universities in the area are cooperating to apply for a grant for a third, mid-range magnet.

Now that the magnet has been loaded in, work on the facility continues and the magnet will be fully installed by spring. Peti already has plans for the new instrument’s capabilities.

He has a hypothesis about how enzymes called MAP kinases are activated in the body. These proteins are responsible for regulating cell functions such as growth and inflammation. Problems in their activation or deactivation can result in terrible ailments such as cancer and Alzheimer’s disease.

“We think we’ve figured out how kinases get activated and we need to record some of the data here to prove our hypothesis,” he said.

Now Brown has a magnet big enough to observe those very tiny phenomena.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Monday, October 12, 2015
NMR Advance Brings Proteins into the Open
A key protein interaction had eluded scientists’ observation until a team of researchers cracked the case by combining data from four different techniques of NMR.
Wednesday, June 26, 2013
Scientific News
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
The US ARL in Maryland Combines Raman Spectroscopy and AFM
Characterizing electrochemical energy storage materials.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!