Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mettler Toledo Launches New On-Demand Webinar

Published: Monday, March 11, 2013
Last Updated: Monday, March 11, 2013
Bookmark and Share
Webinar explains how improved in situ spectroscopy optimizes polymerization.

Mettler Toledo has launched a new on-demand webinar entitled “Real Time Monitoring of Polymerization Processes.”

This free presentation highlights how Fourier Transform Infrared (FTIR) spectroscopy helps Professor Tim Long and his Virginia Tech-based team gain a more complete understanding of critical polymerization processes as they occur in situ.

Over the years, this insight has helped them create new complex polymers with highly desirable properties, and it has also helped them more accurately perform polymerizations so resulting materials exhibit desired characteristics in fewer experiments.

In situ spectroscopy, along with descriptive three-dimensional waterfall plots enabled by the real-time data it produces, helps researchers view monomer absorbance as it occurs so they can determine reactivity ratios and draw confident structure-property relationships with greater ease.

“It’s really an ideal tool to determine chain-growth polymerization kinetics for carbon-carbon double-bond monomer consumption, and activation energy for emerging monomers in a thermal polymerization process,” Professor Long noted. “In situ infrared is absolutely key for us.”

FTIR’s helpful role is demonstrated through review of a series of complex polymerization reaction types, including chain growth, chain growth addition, and nucleophile addition.

The technology’s ability to permit determination of half-life during peroxide decomposition and monitor urethane formation is also reviewed-as is its ability to help researchers reach conclusions in significantly less time than they can with offline sampling, while also limiting their exposure to potentially toxic substances.

For more on the experiments, as well as how real-time understanding of polymerization reaction parameters can result in improved polymer properties and performance, view the free webinar at http://tinyurl.com/polymerwebinar.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mettler-Toledo and Konica Minolta Join Forces
Strategic partnership in the field of multi-parameter analysis for the Flavours & Fragrances industry.
Friday, May 18, 2012
Scientific News
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
The US ARL in Maryland Combines Raman Spectroscopy and AFM
Characterizing electrochemical energy storage materials.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!