Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Accurate Analysis of Ferrosilicon by the Fusion Method

Published: Wednesday, April 24, 2013
Last Updated: Wednesday, April 24, 2013
Bookmark and Share
New application report describes ferrosilicon analysis by using ZSX Primus III+ spectrometer.

Rigaku Corporation has announced the publication of a new application report describing accurate ferrosilicon analysis by wavelength dispersive X-ray fluorescence (WDXRF).

Application Note XRF5026 demonstrates ferrosilicon analysis using the Rigaku ZSX Primus III+ WDXRF spectrometer, which is optimized for process control of steel making and ferrosilicon production. The report covers sample preparation, method calibration and repeatability.

Iron alloys with 15% to 90% silicon content, known as "ferrosilicon," are used to reduce metals from their oxides and to deoxidize steel and other ferrous alloys, preventing the loss of carbon from the molten steel.

Analyses of ferrosilicon, as well as slag and raw materials, are required to control the steel making process.

X-ray fluorescence is the most common method for analyzing ferroalloy, slag, steel and added materials due to its rapid analysis capabilities and its ability to measure both bulk metal and powders.

The metallic elements in ferrosilicon would be converted to oxides using conventional bead fusion methods, so a special fusion technique was developed for this application.

Measurements were performed using the ZSX Primus III+ spectrometer with a 3 kW Rh target X-ray tube.

The analyzer features tube-above optics, where the X-ray tube is located above the sample, reducing the risk of instrument contamination or damage.

The ZSX Primus III+ spectrometer is ideal for iron and steel making process control, including for cast iron and alloy steels, where both bulk metal and powder samples are analyzed as part of the process control protocol.

The system software is based on Rigaku’s flowbar interface that leads the user through a series of procedures step by step and provides various statistical process control functions ideally suited to the steel industry.

The software has a new fusion bead correction function that can accommodate differences in weight ratio among sample, flux and oxidation reagent, loss and gain on ignition and inter-element effects.

The results confirm that ferrosilicon with wide ranges of composition can be accurately analyzed by the fusion method using the newly developed fusion bead correction function, and that highly accurate analysis of the elements in ferrosilicon can be rapidly performed using the ZSX Primus III+ spectrometer.

It is also possible to analyze other ferroalloys, steels and powders, such as slag, with excellent precision.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Using Light To Examine The Lungs Of Premature Babies
New technique has potential to replace the use of X-rays to see how much air babies’ lungs contain.
Novel Spectroscopy by Using Aberrations
Flaws inherent to electron microscopy used to create probes for performing novel atomic-level spectroscopy.
Effective Identification of Low-Gliadin Wheat Lines
Researchers have demonstrated the use of NIRS to identify low-gliadin wheat lines.
Prostate Cancer Surgery Improved
Researchers at UT Southwestern Medical Center have determined that light reflectance spectroscopy can differentiate between malignant and benign prostate tissue with 85 percent accuracy, a finding that may lead to real-time tissue analysis during prostate cancer surgery.
Faster UVA Molecular Analysis Technology
There are people in the world – chemical engineers, astronomers, national defense scientists investigating an explosion – who need to know just what something is made of, down to the molecular level.
Properties of Light Can be Controlled by Nanostructures
A study led by the UPV/EHU-University of the Basque Country professor Ángel Rubio has simulated a new device to generate terahertz radiation using carbon nanostructures.
Infrared Spectrometer ‘Engine’ for Developers
Si-Ware Systems has launched volume production of the smallest, lowest-cost infra-red spectrometer “engine” for developers.
Breaking the Chain
Compound prevents multidrug-resistant fungi from pumping out drugs.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!