Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Techniques Use Lasers, LEDs, and Optics to ‘See’ Under the Skin

Published: Friday, July 19, 2013
Last Updated: Friday, July 19, 2013
Bookmark and Share
The technologies have a wide variety of medical and cosmetic applications such as treating burns, identifying cancer, and speeding the healing of wounds.

Impressive examples of new non-invasive optical techniques using lasers, light-emitting diodes (LEDs), and spectroscopic methods to probe and render images from beneath the surface of the skin are featured in a newly completed special section in the Journal of Biomedical Optics published by SPIE, the international society for optics and photonics. The techniques may be used in a wide variety of medical and cosmetic applications such as treating burns, identifying cancer, or speeding the healing of wounds.

“The skin is the biggest organ of the body, and serves as its barrier to the environment,” noted Special Section Guest Editor Jürgen Lademann of the Charité-Universitätsmedizin Berlin. “It provides protection against water loss, keeps micro-organisms from invading the body, and responds sensitively to external stimuli. As a sensory organ, the skin is an essential means of interpersonal communication.”

Because they are easily accessible, the skin barrier and the underlying living cell layers are ideal subjects for investigation by optical and spectroscopic methods using light-based technologies that work from outside the body, Lademann said. Technologies such as fluorescence, reflectance, laser scanning microscopy, and Raman spectroscopy enable identification of tissues and fluids based on how their specific physical and chemical properties cause them to react to different wavelengths of light.

Optical imaging methods are becoming increasingly popular in the field of pharmacology, specifically for investigating the penetration of topically applied substances into and through the skin barrier. Other uses are imaging blood flow and analysis of the wound healing processes.

Ten of the special section’s 31 papers are available via open access in the SPIE Digital Library. Among the open access papers are reports on:

•         Non-contact imaging to assess pulse rate, by Yu Sun of Singapore Institute for Neurotechnology and researchers at Loughborough University and Barts and the London School of Medicine and Dentistry
•        In vivo imaging to detect skin cancer, by Lioudmila Tchvialeva and others at Vancouver Coastal Health Research Institute, University of British Columbia, BC Cancer Agency, and Simon Fraser University
•        Nanoparticle drug delivery through skin, by Leshuai Zhang and Nancy Monteiro-Riviere of Kansas State University
•        Non-contact optical assessment of skin burn, by Ryosuke Tanaka and other researchers from several departments at Osaka University and from Nara Medical University and University of Tokushima
•        Non-invasive diagnosis of wound healing, by Gitanjal Deka and other researchers at National Yang-Ming University and Taipei City Hospital.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
“Golden Window” in Deep Brain Imaging Opened
The neuroscience community is saluting the creation of a “Golden Window” for deep brain imaging by researchers at The City College of New York led by biomedical engineer Lingyan Shi.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Human Dark Proteome Initiative Launched
Group to focus on advancing research on intrinsically disordered proteins to better understand catastrophic diseases.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Studying Bowel Disease With Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos