Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Choreographed Origami

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
Folding ribosomal RNA requires paired tagging sequence.

An important step in building ribosomes – the cell’s protein factories – is like a strictly choreographed dance, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered. To build these factories, other ‘machines’ inside the cell have to produce specific RNA molecules and fold them into the right shape, then combine the folded RNA with proteins to form a working ribosome. Like a budding origami artist pencilling in the folds, the cell uses tags called methyl groups to help mark where and how an RNA molecule should be folded. In work published online today in Nature, the scientists have discovered that pairs of these tags are added in a specific order. The study combined nuclear magnetic resonance at EMBL and neutron scattering at the Institut Laue-Langevin (ILL) in Grenoble, France.

Led by Teresa Carlomagno at EMBL, the scientists were able to determine the 3D structure of the complex that adds methyl tags to the RNA, with the RNA molecules attached. They discovered that the different components of this tagging machine pair up and move in sequence, like dancers following a set choreography.

 “We found that the complex has four copies of each protein, and four methylation sites on the RNA, but those methylation sites aren’t all the same,” Carlomagno says. “They come in pairs, and one pair has to be methylated before the other.”

The fact that the pairs of tags have to be added in a particular order could be a way for the cell to control how the RNA is folded, and ultimately when and where ribosomes are formed, the scientists believe.

The study provides a detailed view of the complex in a form that’s very close to what’s found inside our cells. To obtain it, the EMBL scientists teamed up with Frank Gabel at the Institut Laue-Langevin (ILL) and the Institut de Biologie Structurale (IBS), both in Grenoble, France, to combine their expertise in nuclear magnetic resonance (NMR) with the Gabel lab's skills in small angle neutron scattering (SANS).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

No Humans Required
Automated tool for tracking proteins and the molecules they interact with in living cells developed.
Wednesday, March 18, 2015
Scientific News
Using the Linkam THMS600 Temperature Stage to Study Fluid Inclusions
The University of Lyon use the Linkam THMS600 temperature stage for the study of Brillouin spectroscopy of fluid inclusions.
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Making Mechanically Strong Nanotubes With Light
Researchers develop "Helix-to-Tube", a simple strategy to synthesize covalent organic nanotubes.
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Magnetic Drug Delivery in the Body
Imagine a device that could transport drugs to any diseased site in the body with the help of a small magnet.
Detecting Hazardous Chemicals in Complex Mixtures
Researchers are pioneering a new chemical substance analyis software technique that could increase illicit substance detection.
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
Improving Wheat Crops in the Field
Agrii, RAGT and the University of Nottingham are developing better disease management and yield production in wheat crops using ASD FieldSpec Handheld 2 portable spectroradiometers.
Monitoring Changes, Variability in Blood
Raman spectroscopy used as a tool for monitoring biochemical changes and inter-donor variability in stored red blood cell units.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!