Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Anasys' EPFL Users Publish Their AFM-IR Application of Research into Photosynthesis

Published: Thursday, October 24, 2013
Last Updated: Wednesday, October 23, 2013
Bookmark and Share
Anasys reports on EPFL's publication in Plant Cell on the use of nanoIR to look into the process of photosynthesis to shed more light on how plants produce energy.

École Polytechnique Federale de Lausanne, better known as EPFL, has recently reported on how a group of its scientists have used powerful imaging techniques including nanoIR to support a study which sheds light on photosynthesis.

All plants use a form of photosynthesis to produce energy, though not all rely exclusively on it. In higher plants, capturing light takes place in specialized compartments called thylakoids. These are found in cell organelles called chloroplasts, which are the equivalent of a power station for the plant.

Despite being well-defined from a biochemical perspective, photosynthesis is still a mystery when we consider what happens at the level of the cell.

Collaborating in a study published in Plant Cell, EPFL scientists have used a range of microscopy and visualization techniques to understand how the largest photosynthetic pigment-protein antenna complex, known as light-harvesting complex II (LHCII) behave to capture light.

Andrzej Kulik from Giovanni Dietler's group at EPFL, collaborating with Wiesław Gruszecki at the Maria Curie-Sklodowska University and with researchers at the University of Warsaw compared LHCII-membrane complexes isolated from spinach leaves.

The difference lay in the amount of light the complexes had received: One group came from leaves adapted to the dark and the other from leaves previously exposed to high-intensity light.

Using X-ray diffraction, nanoscale infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy, the researchers found that the dark-adapted LHCII-membranes complexes assembled into rivet-like stacks of bilayers (like a typical chloroplast membranes), while the pre-illuminated complexes formed 3-D forms that were considerably less structured.

The authors conclude that the formation of bilayer, rivet-like structures is crucial in determining how the thylakoid membrane structures itself in response to light exposure.

Depending on how much light they receive, the membranes can either stack up on each other or unstack in order to better utilize the energy captured.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New NIST AFM-IR Publication has Catalysis Research Implications
Anasys Instruments reports on a new publication from their nanoIR users at NIST which assess the chemical composition of a metal-organic framework with nanoscale resolution.
Tuesday, March 25, 2014
Inventor of AFM-IR Technique to Receive Ernst Abbe Memorial Award
Professor Alexandre Dazzi to receive the award for pioneering field of nanoscale IR Spectroscopy.
Wednesday, March 19, 2014
French Researchers to Identify Best Microbes for Biofuel Production
Scientists used atomic force microscopy combined with infrared spectroscopy.
Wednesday, February 19, 2014
Anasys' NIST Users Report on New AFM-IR Nanoscale Chemical Imaging Method
New application for AFM-IR to study in NIST publication "Tech Beat."
Thursday, July 25, 2013
Purdue University Researchers Use Nanoscale IR Spectroscopy via AFM-IR
Utilizing this technique has provided key insights into drug-polymer blends.
Friday, May 11, 2012
Invited Award Symposium Presentation Nanoscale IR Spectroscopy at Pittcon 2012
Anasys Instruments announced that Dr. Bruce Chase is presenting an invited talk entitled "Structure and Orientation in Electrospun Nanofibers", as part of the Organized Contributed Session on Analytical Applications of Broadly Tunable Lasers.
Thursday, March 08, 2012
Anasys Instruments Receives Microscopy Today’s 2011 Innovation Award
AFM-IR system has been recognized by Microscopy Today in the receipt of the 2011 Innovation Award.
Thursday, August 18, 2011
Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
“Golden Window” in Deep Brain Imaging Opened
The neuroscience community is saluting the creation of a “Golden Window” for deep brain imaging by researchers at The City College of New York led by biomedical engineer Lingyan Shi.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Human Dark Proteome Initiative Launched
Group to focus on advancing research on intrinsically disordered proteins to better understand catastrophic diseases.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Studying Bowel Disease With Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos