Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists at the Chinese Academy of Sciences Use the Linkam CAP500 Heating Stage

Published: Thursday, October 31, 2013
Last Updated: Wednesday, October 30, 2013
Bookmark and Share
Use of CAP500 stage for extreme deep sea research at SIDSSE.

Linkam Scientific Instruments, report on the use of their innovative CAP500 heating stage for geological research at the new Sanya Institute of Deep-sea Science and Engineering (SIDSSE) of the Chinese Academy of Sciences.

Founded in 1956, The Chinese Academy of Geological Sciences is devoted to scientific investigation and research on basic, hydro, environmental, and karst geology.

Further areas of interest are exploration geophysics and geochemistry; rock and mineral analysis; and efficient mineral resources utilization.

A new modern hydrothermal laboratory is being built as part of the new Sanya Institute of Deep-sea Science and Engineering (SIDSSE), a division of the Chinese Academy of Geological Sciences.

Dr I-Ming Chou, a leading scientist behind the creation of the SIDSSE laboratory, and his colleagues are using the CAP500 stage to conduct experimental studies of extreme deep-sea conditions.

He said: "the sea floor is a frontier for current and future human exploration. The recent successful dive of manned submersible Jiaolong at the depth of 7062m was one of the major scientific achievements of China. This accomplishment provided us with great opportunities for exploring the sea floor, especially the hadal zones that have previously been inaccessible to us. This will facilitate important new research and establish hadal sciences in China. We will also be able to explore and study the life, environments, and geodynamics at the deepest part of the Earth's surface, as well as to formulate possible models for the geological processes that occurred or will occur beneath the sea floor."

To further their geological research the scientists are using the prototype Linkam CAP500 stage. The CAP500 system can control up to 50mm of quartz capillary at high pressure (600bar) from -196°C to 500°C.

In relation to the stage Dr Chou said: "We are beta testing this system with a number of different labs at the moment. Sample temperatures are controlled using a T95 controller with a T95 LinkPad and LNP95 cooling system through Linksys32 temperature control and video capture software. A capillary tube of HPOC can be inserted into a channel (1mm wide and 0.6mm deep) of a silver block (20mm x 50mm). Optical cells have fused silica windows for the study of geological fluids. A small aperture through the centre of the stage, allows samples to be viewed with transmitted light while its design minimizes the temperature gradient along its length."

Dr Chou noted: "The simulated pressure-temperature conditions we can create using the CAP500 will cover hydrothermal vents, hadal zones, and trenches (from 1 to 400°C and up to 600bar). A major advantage of the high-pressure optical cells is the transparency of its windows. This allows the in situ observations and spectroscopic analyses of the samples, and continuous recording during experiments for later review. Using optical cells allows us to not only observe many geological processes at higher P-T conditions, but also characterize geological samples in the cells by using advanced spectroscopic tools, including Raman spectroscopy and synchrotron X-ray spectroscopy. Optical cells with fused silica windows are particularly suitable for the study of organic systems and for systems containing sulphur. Furthermore, fluid standards with known composition and pressure can be prepared in these types of cells for quantitative Raman analyses of either natural or synthetic fluids."

When asked about the stage, Dr Chou said: "the stage has the following advantages for the study of geological fluids at P-T conditions up to 500°C and 600bar: it has (1) fluid samples which are easy to load; (2) greater Raman signal intensity; (3) sample pressures which can be measured directly when the HPOC is used; and is (4) easy to operate; and (5) less expensive than other systems on the market."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Using Light To Examine The Lungs Of Premature Babies
New technique has potential to replace the use of X-rays to see how much air babies’ lungs contain.
Novel Spectroscopy by Using Aberrations
Flaws inherent to electron microscopy used to create probes for performing novel atomic-level spectroscopy.
Effective Identification of Low-Gliadin Wheat Lines
Researchers have demonstrated the use of NIRS to identify low-gliadin wheat lines.
Prostate Cancer Surgery Improved
Researchers at UT Southwestern Medical Center have determined that light reflectance spectroscopy can differentiate between malignant and benign prostate tissue with 85 percent accuracy, a finding that may lead to real-time tissue analysis during prostate cancer surgery.
Faster UVA Molecular Analysis Technology
There are people in the world – chemical engineers, astronomers, national defense scientists investigating an explosion – who need to know just what something is made of, down to the molecular level.
Properties of Light Can be Controlled by Nanostructures
A study led by the UPV/EHU-University of the Basque Country professor Ángel Rubio has simulated a new device to generate terahertz radiation using carbon nanostructures.
Infrared Spectrometer ‘Engine’ for Developers
Si-Ware Systems has launched volume production of the smallest, lowest-cost infra-red spectrometer “engine” for developers.
Breaking the Chain
Compound prevents multidrug-resistant fungi from pumping out drugs.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!