Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

MR Spectroscopy Shows Differences in Brains of Preterm Infants

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
Premature birth appears to trigger developmental processes in the white matter of the brain that could put children at higher risk of problems later in life.

The study will be presented Sunday, December 2, at the annual meeting of the Radiological Society of North America (RSNA).

Premature birth appears to trigger developmental processes in the white matter of the brain that could put children at higher risk of problems later in life, according to a study being presented next week at the annual meeting of the Radiological Society of North America (RSNA).

Preterm infants—generally those born 23 to 36 weeks after conception, as opposed to the normal 37- to 42-week gestation—face an increased risk of behavioral problems, ranging from impulsiveness and distractibility to more serious conditions like autism and attention deficit hyperactivity disorder (ADHD).

“In the United States, we have approximately 500,000 preterm births a year,” said Stefan Blüml, Ph.D., director of the New Imaging Technology Lab at Children’s Hospital Los Angeles and associate professor of research radiology at the University of Southern California in Los Angeles. “About 60,000 of these babies are at high risk for significant long-term problems, which means that this is a significant problem with enormous costs.”

Dr. Blüml and colleagues have been studying preterm infants to learn more about how premature birth might cause changes in brain structure that may be associated with clinical problems observed later in life. Much of the focus has been on the brain’s white matter, which transmits signals and enables communication between different parts of the brain. While some white matter damage is readily apparent on structural magnetic resonance imaging (MRI), Dr. Blüml’s group has been using magnetic resonance spectroscopy (MRS) to look at differences on a microscopic level.

In this study, the researchers compared the concentrations of certain chemicals associated with mature white matter and gray matter in 51 full-term and 30 preterm infants. The study group had normal structural MRI findings, but MRS results showed significant differences in the biochemical maturation of white matter between the term and preterm infants, suggesting a disruption in the timing and synchronization of white and gray matter maturation. Gray matter is the part of the brain that processes and sends out signals.

“The road map of brain development is disturbed in these premature kids,” Dr. Blüml said. “White matter development had an early start and was ‘out of sync’ with gray matter development.”

This false start in white matter development is triggered by events after birth, according to Dr. Blüml.

“This timeline of events might be disturbed in premature kids because there are significant physiological switches at birth, as well as stimulatory events, that happen irrespective of gestational maturity of the newborn,” he said. “The most apparent change is the amount of oxygen that is carried by the blood.”

Dr. Blüml said that the amount of oxygen delivered to the fetus’s developing brain in utero is quite low, and our brains have evolved to optimize development in that low oxygen environment. However, when infants are born, they are quickly exposed to a much more oxygen-rich environment.

“This change may be something premature brains are not ready for,” he said.

While this change may cause irregularities in white matter development, Dr. Blüml noted that the newborn brain has a remarkable capacity to adapt or even “re-wire” itself—a concept known as plasticity. Plasticity not only allows the brain to govern new skills over the course of development, like learning to walk and read, but could also make the brains of preterm infants and young children more responsive to therapeutic interventions, particularly if any abnormalities are identified early.

“Our research points to the need to better understand the impact of prematurity on the timing of critical maturational processes and to develop therapies aimed at regulating brain development,” Dr. Blüml said.

Co-authors are Ashok Panigrahy, M.D., Marvin D. Nelson, M.D., Lisa Paquette, M.D., and Jessica L. Wisnowski, Ph.D.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
The US ARL in Maryland Combines Raman Spectroscopy and AFM
Characterizing electrochemical energy storage materials.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!