Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

What can Investigators Really Tell from Gunshot Residue?

Published: Thursday, March 27, 2014
Last Updated: Thursday, March 27, 2014
Bookmark and Share
Researchers have developed a novel approach to improve gunshot residue fingerprinting to rapidly detect a wider range of particles than existing methods.

The popular TV series “CSI” is fiction, but every day, real-life investigators and forensic scientists collect and analyze evidence to determine what happened at crime scenes. In a study published in the ACS journal Analytical Chemistry, scientists say they have developed a more rapid and accurate method that could allow crime scene investigators to tell what kind of ammunition was shot from a gun based on the residue it left behind.

Igor K. Lednev and Justin Bueno point out that when someone fires a gun, burnt particles from the bullet spray out of the weapon onto a shooter’s hand, clothes, furniture and other surfaces nearby. The presence or absence of that residue says whether a gun was discharged and — based on its location on clothing and other surfaces — who and what was near the weapon when it was fired. But current analysis methods can only re-create a crime scene story in hazy detail. The most widely used technique today specializes in detecting the heavy metals that some ammunition contains. Newer bullets, however, aren’t necessarily made with heavy metals, making analyses much more difficult. Also, existing methods require expensive equipment and a lot of time, luxuries law enforcement can’t afford. To bring real-life CSI closer to what’s hyped on TV, Lednev’s team set out to find a new way to trace the ammunition used in a crime.

They developed a novel approach to improve gunshot residue “fingerprinting” that can rapidly detect a wider range of particles than existing methods. “Therefore the ability to detect these chemicals may indicate that a specific ammunition brand was discharged (or was not) during a shooting incident,” the researchers state, adding that their work could also have applications in the fields of homeland security and counter-terrorism.

The article "Attenuated Total Reflectance-FT-IR Imaging for Rapid and Automated Detection of Gunshot Residue” is published online in Analytical Chemistry


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How to Prevent Organic Food Fraud
A new test under development has the potential to authenticate organic tomatoes and other produce.
Wednesday, August 27, 2014
Scientific News
A Highly Sensitive Graphene Based Sensor
Researchers at EPFL and ICFO have developed a sensor made from graphene to detect molecules such as proteins and drugs.
Cannabis May Be Used to Treat Fractures
TAU researcher finds non-psychotropic compound in marijuana can help heal bone fissures.
Researchers Reveal Elusive Molecule
A long-standing chemistry puzzle has been solved, with potential implications ranging from industrial processes to atmospheric chemistry.
Optical 'Dog's Nose' Developed to Detect Cancer, Other Diseases
Researchers are using optical spectroscopy to develop a quick, non-invasive “breath test” they believe will have the potential to screen for a variety of diseases, including diabetes, infections and cancers.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
NIR Spectroscopy Produces a Handy Image of Blood Circulation
Poor blood circulation can be revealed by a novel form of near infrared (NIR) spectroscopy, say Italian medical researchers.
Combination Imaging Reveals Fuel Cell Damage
A simultaneous view of both chemical distribution and bonding states in fuel cell membranes shows how and where irreversible degradation takes place.
Shining A New Light On The Immune System
Scientists at the University of St Andrews have developed a revolutionary method of identifying cells of the immune system with “molecular fingerprints” which could pave the way for the rapid detection of conditions such as leukaemia and lymphoma from a small blood sample.
Holes in Gold Enhance Molecular Sensing
Electrochemical techniques produce tuneable porous gold films, where the empty spaces enhance light scattering and sensing signals.
Damming hemorrhagic diseases
A potential mechanism to combat diseases caused by haemorrhagic fever viruses has been discovered by researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!