Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mountain Climbing Without the Headaches

Published: Friday, April 04, 2014
Last Updated: Friday, April 04, 2014
Bookmark and Share
By monitoring blood flow in the brains of six climbers, researchers have identified a possible way to prevent the headaches that are a common feature of altitude sickness.

Other features of altitude sickness include fatigue, digestive problems, weakness and dizziness. They are all caused by the decrease in the partial pressure of oxygen at altitudes above around 2500 m, as the number of oxygen molecules in a given volume drops. This produces an associated decrease in the concentration of oxygen in the blood and results in less oxygen reaching the brain. After a few days, most people naturally acclimatise and the symptoms of altitude sickness disappear.

Breathing patterns can also be affected by the fall in the partial pressure of oxygen at high altitudes. This doesn’t tend to be noticeable when awake, because climbers consciously regulate their breathing. When sleeping at high altitudes, however, climbers tend to alternate between rapid, deep breathing (hyperventilation) and then much slower, shallower breathing (hypoventilation), sometimes briefly stopping breathing altogether (apnoea), with each cycle lasting for around 30 seconds. This is all down to how the body reacts to varying concentrations of oxygen and carbon dioxide (CO2) in the blood.

“The lack of oxygen at high altitude causes the climbers to hyperventilate, which leads to a decline of CO2 in the blood,” explains Peter Stein, who is in the department of anesthesiology, intensive care medicine and pain therapy at University Hospital Frankfurt. “The decline of CO2 leads to episodes of hypoventilation or even apnoea when the conscious breathing control subsides during sleep. As a consequence the oxygen level drops, causing an arousal and subsequent hyperventilation.”

Stein and his colleagues wanted to discover whether this abnormal breathing pattern was reducing the supply of oxygen to the brain, potentially worsening the effects of altitude sickness. To find out, they turned to NIR spectroscopy, an analytical technique that detects specific molecules based on their absorption and reflection of light at near infrared wavelengths. Specifically, Stein and his colleagues wanted to use NIR spectroscopy to monitor changes in the concentration of haemoglobin, both oxygenated and deoxygenated, in the blood supply to the brain.

So they accompanied six climbers as they scaled Mount Kilimanjaro, the highest free-standing mountain in the world at 5895 m above sea level, attaching NIR electrodes to the climbers’ foreheads while they slept to monitor haemoglobin concentrations. “The most challenging part was to transport not only the NIR spectroscope into basecamp but also all the equipment necessary to provide electricity,” says Stein. “Therefore we bought a lightweight generator and enough fuel to provide power throughout all the nights.”

What they discovered was that the abnormal breathing pattern caused periodic changes in the concentration of oxygenated haemoglobin and total haemoglobin, but not in the concentration of deoxygenated haemoglobin. This indicates that although the abnormal breathing pattern did alter the flow of blood into the climbers’ brains, it didn’t reduce the amount of oxygen reaching their brain tissue.

The researchers also discovered, however, that those climbers experiencing the most extreme periodic changes in haemoglobin concentrations in the brain as they slept were also those that suffered most from headaches at high altitudes. This suggests that one simple approach to preventing these headaches is to find ways to stop the abnormal breathing that occurs when sleeping at high altitudes.

“Our experiments reveal a pathomechanism contributing to the aetiology of the most common symptom of altitude sickness: headache,” says Stein. “I hope that based on our findings it will be possible to develop new therapeutic approaches that help to increase comfort and safety for climbers in the future.”

The research is published as P. Stein, A. Lampe, A. Pape, K. Zacharowski, R. Hudek and C.F. Weber, “Sleeping on Mt Kilimanjaro—The influence of hypobaric hypoxia on brain perfusion and cerebral tissue oxygenation” J. Near Infrared Spectrosc. 22, 1 (2014) doi: 10.1255/jnirs.1088


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIR Spectroscopy Can Ensure the Safety and Purity of Dairy Products
NIR spectroscopy has been used for quality assurance purposes by the dairy industry for over 40 years.
Wednesday, October 30, 2013
A Non-Invasive Method for Estimating Skin Thickness
A novel application of near infrared (NIR) spectroscopy offers skin specialists the ability to monitor skin for medical and cosmetic purposes in a cost-effective and harmless manner.
Thursday, December 13, 2012
Non-invasive Assessment of Glycaemic Index Using Near Infrared Light
A reliable, non-invasive technique for checking blood glucose has eluded medical analysts despite many years of research by teams in many countries. Professor Sumio Kawano and colleagues at the National Food Research Institute, Tsukuba, Japan, have demonstrated that GI can be determined without the need for an excessive number of blood samples.
Friday, December 17, 2010
Scientific News
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
The US ARL in Maryland Combines Raman Spectroscopy and AFM
Characterizing electrochemical energy storage materials.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!