Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Quantum Memory on the Horizon

Published: Friday, May 23, 2014
Last Updated: Friday, May 23, 2014
Bookmark and Share
Sensitive measurements can be used to detect signals from an individual ion in a crystal.

A promising material is lining itself up as a candidate for a quantum memory. A team at the Max Planck Institute for the Science of Light in Erlangen is the first to succeed in performing high-resolution spectroscopy and microscopy on individual rare earth ions in a crystal.

With the aid of ingenious laser and microscopy technology they determined the position of triply charged positive praseodymium atoms (Pr3+) in an yttrium orthosilicate to within a few nanometres and investigated their weak interaction with light.

In addition to its impact on fundamental studies, the work may make an important contribution to the quantum computers of the future because the ions investigated are suitable for storing and processing quantum information.

Around the globe, numerous researchers are working on components for the quantum computers of the future, which will be able to process information significantly faster than today. The key elements of these super-computers include quantum systems with optical properties similar to those of an atom.

This is why many researchers are currently focusing their attention on different systems such as light-emitting crystal defects (“colour centres”) in diamond or on semiconductor quantum dots. However, so far there has been no ideal solution.

“Some of the light sources lose their brightness or flicker in an uncontrollable way,” explains Vahid Sandoghdar, who heads the Nano-Optics Department at the Max Planck Institute for the Science of Light in Erlangen. “Others are greatly affected by the environment into which they are embedded.”

Researchers observe the signals of an individual ion
It has long been known that the rare earth ions such as neodymium or erbium do not suffer from these problems - which is also why they play a key role in lasers or laser amplifiers. They emit only weakly, however, and are therefore difficult to detect. This is precisely what Tobias Utikal, Emanuel Eichhammer and Stephan Götzinger from Sandoghdar’s Group in Erlangen have succeeded to do: after more than six years of intensive research they were able to detect individual praseodymium ions, pinpoint them with an accuracy of a few nanometres, and measure their optical properties with an accuracy never achieved before.

The triply charged, positive ions were embedded in tiny microcrystals and nanocrystals of yttrium orthosilicate (YSO). Their energies varied only slightly depending on their position in the crystal. In other words, they reacted to slightly different frequencies. The scientists used this to excite individual ions in the crystals with a laser and to observe how they emit the energy after some time in form of light.

“Because rare earth ions are not strongly affected by the thermal and acoustic oscillations of the crystal, some of their energy states are unusually stable,” says Sandoghdar. “It takes more than a minute before they make the transition into the ground state again - a million times longer than for most of the other quantum systems that have been investigated so far.”

The aim is for the signals of the ions to be even easier to observe in the future. Since an individual ion responds with less than 100 photons per second at the moment, the Erlangen-based scientists want to employ nano-antennas and microcavities to amplify the praseodymium signal by a hundred or a thousand times.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
A Highly Sensitive Graphene Based Sensor
Researchers at EPFL and ICFO have developed a sensor made from graphene to detect molecules such as proteins and drugs.
Cannabis May Be Used to Treat Fractures
TAU researcher finds non-psychotropic compound in marijuana can help heal bone fissures.
Researchers Reveal Elusive Molecule
A long-standing chemistry puzzle has been solved, with potential implications ranging from industrial processes to atmospheric chemistry.
Optical 'Dog's Nose' Developed to Detect Cancer, Other Diseases
Researchers are using optical spectroscopy to develop a quick, non-invasive “breath test” they believe will have the potential to screen for a variety of diseases, including diabetes, infections and cancers.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
NIR Spectroscopy Produces a Handy Image of Blood Circulation
Poor blood circulation can be revealed by a novel form of near infrared (NIR) spectroscopy, say Italian medical researchers.
Combination Imaging Reveals Fuel Cell Damage
A simultaneous view of both chemical distribution and bonding states in fuel cell membranes shows how and where irreversible degradation takes place.
Shining A New Light On The Immune System
Scientists at the University of St Andrews have developed a revolutionary method of identifying cells of the immune system with “molecular fingerprints” which could pave the way for the rapid detection of conditions such as leukaemia and lymphoma from a small blood sample.
Holes in Gold Enhance Molecular Sensing
Electrochemical techniques produce tuneable porous gold films, where the empty spaces enhance light scattering and sensing signals.
Damming hemorrhagic diseases
A potential mechanism to combat diseases caused by haemorrhagic fever viruses has been discovered by researchers.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!