Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sneaky Bacteria Change Key Protein’s Shape to Escape Detection

Published: Wednesday, May 28, 2014
Last Updated: Wednesday, May 28, 2014
Bookmark and Share
Researchers believe that this deeper understanding could help lead to new treatments for bacterial diseases.

Every once in a while in the U.S., bacterial meningitis seems to crop up out of nowhere, claiming a young life. Part of the disease’s danger is the ability of the bacteria to evade the body’s immune system, but scientists are now figuring out how the pathogen hides in plain sight. Their findings, which could help defeat these bacteria and others like it, appear in the Journal of the American Chemical Society.

Linda Columbus and colleagues explain that the bacteria Neisseria meningitidis, one cause of meningitis, and its cousin Neisseria gonorrhoeae, which is responsible for gonorrhea, have key-like proteins that allow them to enter human cells and do their damage. Gonorrhea can be cured, though one type of the responsible bacteria has reached “superbug” status, becoming resistant to known drugs. If meningitis is not treated immediately with antibiotics, it can cause severe disability and death. In a search for new ways to treat these diseases, scientists are looking more closely at how the bacteria sneak around in the body undetected. When someone gets an infection, specific proteins — called antigens — that stud the pathogen’s outer layer usually raise an alarm, and the body’s immune system goes on the attack. But these two kinds of Neisseria bacteria can elude the body’s look-out cells, and Columbus’ team wanted to know how.

They combined two approaches to figure out the architecture of one of the bacteria’s outer proteins that help it gain entry into human cells. They found that the protein’s outer loops that jostle against each other, causing their structure to constantly change. This shape-shifting makes for a kind of camouflage that hides them from the body’s sentinels, at the same time preserving its ability to bind to and enter a person’s cells. This deeper understanding could help lead to new treatments for bacterial diseases, the scientists state.

The article “Structure of the Neisserial Outer Membrane Protein Opa60: Loop Flexibility Essential to Receptor Recognition and Bacterial Engulfment” is published in the Journal of the American Chemical Society and is  available online. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Chemical Snapshots Could Lead to Better Engineered Cartilage
Taking "chemical photographs" of the cartilage between joints and comparing it to engineered versions could lead to better implants, say researchers.
Identifying Functional Biomarkers of Traumatic Brain Injury
In this study, prefrontal hemodynamic biomarkers were identified that can distinguish traumatic brain injury patients from healthy subjects.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Identification of Individual Red Blood Cells by Raman Microspectroscopy
In this study, Raman Microspectroscopy was used to identify individual red blood cells.
The Power Of Orthogonality In Assessing The Stability Of Biopharmaceuticals
By utilizing orthogonal techniques, researchers can maximize the secure application of all analytical results generated.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Curcumin Shows Promise as Cancer Treatment
When delivered at the correct circadian phase, curcumin demonstrates sustained toxicity in cancer cells and should be considered for use in patient care.
Using the Linkam THMS600 Temperature Stage to Study Fluid Inclusions
The University of Lyon use the Linkam THMS600 temperature stage for the study of Brillouin spectroscopy of fluid inclusions.
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!