Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

3-in-1 Spectroscopy System Improves Skin Cancer Detection

Published: Thursday, August 07, 2014
Last Updated: Thursday, August 07, 2014
Bookmark and Share
The new device may detect cancerous skin lesions early on, leading to better treatment outcomes and ultimately saving lives.

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have designed an optical device that may reduce the number of unnecessary biopsies by offering a fast, comprehensive, noninvasive and lower-cost solution to detect melanoma and other skin cancer lesions.

James Tunnell, an associate professor in the Department of Biomedical Engineering, led a team of researchers to develop a probe that combines three unique ways of using light to measure the properties of skin tissue. The researchers have begun testing their 3-in-1 device in clinical trials and are partnering with funding agencies and startup companies to help bring the device to dermatologists.

Previous research efforts have tried combining spectroscopic techniques to aid in skin cancer detection, but the UT Austin team is the first to put three techniques in a single probe that would be inexpensive enough to be used widely in clinics and doctors’ offices. Tunnell and his colleagues combined Raman spectroscopy, diffuse reflectance spectroscopy and laser-induced fluorescence spectroscopy to create a more complete picture of a skin lesion. By revealing information invisible to the human eye, the probe could offer a faster, better screening tool for cancer and eliminate many biopsies.

“Skin is a natural organ to apply imaging and spectroscopy devices to because of its easy access,” Tunnell said.

The probe itself is about the size of a pen, and the spectroscopic and computer equipment that supports it fits neatly onto a portable utility cart that can be wheeled between rooms. Each reading takes about 4.5 seconds to perform.

The researchers describe the skin cancer probe in a new paper published Aug. 5 in the journal Review of Scientific Instruments. In addition to Tunnell, Manu Sharma, former postdoctorate student at the Cockrell School; Eric Marple of EmVision LLC; and Jason Reichenberg of the University of Texas Southwestern Medical Center co-authored the study.

Skin cancers of all types are the most common forms of cancer in North America. Melanoma, the most deadly form of skin cancer, is one of the leading causes of cancer death, killing nearly 10,000 people every year in the United States.

Currently, the only definitive way to diagnose skin cancer is to perform a biopsy, in which doctors remove a suspect skin lesion and then examine the stained tissue under a microscope to look for cancerous cells. Determining which lesions to biopsy is an imprecise art, however, and for every case of skin cancer detected there are about 25 negative biopsies performed, translating to a cost of $6 billion to the U.S. health care system, according to estimations performed by the researchers. Tunnell believes the new probe developed by his team could eventually help reduce the high number and cost of negative biopsies by giving a clear picture of which skin lesions are most likely cancerous.

As normal skin becomes cancerous, cell nuclei enlarge, the top layers of skin can thicken and the skin cells can increase their consumption of oxygen and become disorganized, Tunnell said. The changes alter the way light interacts with the tissue.

To detect all these changes requires multiple spectroscopic techniques. For example, diffuse optical spectroscopy is sensitive to absorption by proteins, such as hemoglobin. Raman spectroscopy is sensitive to vibrational modes of chemical bonds, such as those found in connective tissues, lipids and cell nuclei.

Most devices have been at the research stage for the past 10 years or so, but several are now undergoing clinical development, including the researchers’ 3-in-1 device.

“This probe, which is able to combine all three spectral modalities, is the next critical step to translating spectroscopic technology to the clinic,” Tunnell said.

The study was funded in part by the Community Foundation of North Central Wisconsin and the National Institutes of Health. 

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
“Golden Window” in Deep Brain Imaging Opened
The neuroscience community is saluting the creation of a “Golden Window” for deep brain imaging by researchers at The City College of New York led by biomedical engineer Lingyan Shi.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Human Dark Proteome Initiative Launched
Group to focus on advancing research on intrinsically disordered proteins to better understand catastrophic diseases.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Studying Bowel Disease With Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos