Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Watching Molecules ‘Dance’ in Real Time

Published: Friday, August 29, 2014
Last Updated: Friday, August 29, 2014
Bookmark and Share
Trapping light at the nanoscale enables real-time monitoring of individual molecules bending and flexing may aid in our understanding of how changes within a cell can lead to diseases such as cancer.

A new method which uses tightly confined light trapped between gold mirrors a billionth of a metre apart to watch molecules ‘dancing’ in real time could help researchers uncover many of the cell processes that are essential to all life, and how small changes to these processes can lead to diseases such as cancer or Alzheimer’s.

Researchers from the University of Cambridge have demonstrated how to use light to view individual molecules bending and flexing as they move through a model cell membrane, in order to better understand the inner workings of cells. Details are published in the journal Scientific Reports.

The membrane is vital to the normal functioning of cells; keeping viruses out but allowing select molecules, such as drugs, to get through. This critical front line of cellular defence is made up of a layer of fatty lipids, just a few nanometres (one billionth of a metre) thick.

When the cell membrane is damaged however, unwanted invaders can march into the cell. Many degenerative diseases, such as Alzheimer’s, Parkinson’s, cystic fibrosis and muscular dystrophy are believed to originate from damage to the cell membrane.

The ability to watch how individual lipid molecules interact with their environment can help researchers understand not only how these and other diseases behave at their earliest stages, but also many of the fundamental biological processes which are key to all life.

In order to view the behaviour of the cell membrane at the level of individual molecules, the Cambridge team, working with researchers from the University of Leeds, squeezed them into a tiny gap between  the mirrored gold facets of a nanoparticle sitting just above a flat gold surface.

Through highly precise control of the geometry of the nanostructures, and using Raman spectroscopy, an ultra-sensitive molecular identification technique, the light can be trapped between the mirrors, allowing the researchers to ‘fingerprint’ individual molecules. “It’s like having an extremely powerful magnifying glass made out of gold,” said Professor Jeremy Baumberg of the NanoPhotonics Centre at Cambridge’s Cavendish Laboratory, who led the research.

Analysing the colours of the light which is scattered by the mirrors allowed the different vibrations of each molecule to be seen within this intense optical field. “Probing such delicate biological samples with light allows us to watch these dancing molecules for hours without changing or destroying them,” said co-author Felix Benz. The molecules stand shoulder to shoulder like trees in a forest, while a few jitter around sideways.

By continuously observing the scattered light, individual molecules are seen moving in and out of the tiny gaps between the mirrors. Carefully analysis of the signatures from different parts of each molecule allowed any changes in the molecule shape to be observed, which helps to understand how their reaction sites can be uncovered when they are at work. Most excitingly the team says these flexing and bending motions are not expected to occur at the slow time scales of the experiment, allowing the researchers  to make videos of their progress.

“It is completely astonishing to watch the molecules change shape in real time,” said Richard Taylor, lead author of the paper.

The new insights from this work suggest ways to unveil processes which are essential to all life and understand how small changes to these processes can cause disease.

The research was funded by the UK Engineering and Physical Sciences Research Council and the European Research Council.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
A Highly Sensitive Graphene Based Sensor
Researchers at EPFL and ICFO have developed a sensor made from graphene to detect molecules such as proteins and drugs.
Cannabis May Be Used to Treat Fractures
TAU researcher finds non-psychotropic compound in marijuana can help heal bone fissures.
Researchers Reveal Elusive Molecule
A long-standing chemistry puzzle has been solved, with potential implications ranging from industrial processes to atmospheric chemistry.
Optical 'Dog's Nose' Developed to Detect Cancer, Other Diseases
Researchers are using optical spectroscopy to develop a quick, non-invasive “breath test” they believe will have the potential to screen for a variety of diseases, including diabetes, infections and cancers.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
NIR Spectroscopy Produces a Handy Image of Blood Circulation
Poor blood circulation can be revealed by a novel form of near infrared (NIR) spectroscopy, say Italian medical researchers.
Combination Imaging Reveals Fuel Cell Damage
A simultaneous view of both chemical distribution and bonding states in fuel cell membranes shows how and where irreversible degradation takes place.
Shining A New Light On The Immune System
Scientists at the University of St Andrews have developed a revolutionary method of identifying cells of the immune system with “molecular fingerprints” which could pave the way for the rapid detection of conditions such as leukaemia and lymphoma from a small blood sample.
Holes in Gold Enhance Molecular Sensing
Electrochemical techniques produce tuneable porous gold films, where the empty spaces enhance light scattering and sensing signals.
Damming hemorrhagic diseases
A potential mechanism to combat diseases caused by haemorrhagic fever viruses has been discovered by researchers.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!