Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


FilterMax F3

Product Description
The FilterMax™ F3 Multi-Mode Microplate Readers provide unmatched value and flexibility for a variety of applications capable of performing:

- Absorbance detection in the visible range (340 nm to 650 nm)
- Fluorescence Intensity (FI) top read
- Luminescence (glow)
- Scan measurement types: endpoint, kinetic, multiple wavelength, linear scan and area scan
- Linear and Orbital shaking
- Temperature Control
The FilterMax F3 Series can operate as standalone instruments or can be integrated seamlessly with laboratory automation platforms, and is ideal for a broad range of applications, including drug discovery, genomics, proteomics and cell-based research. The unique patented design ensures precise performance and sensitivity across all detection modes.
Product FilterMax F3
Company Molecular Devices Product Directory
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices Product Directory
1311 Orleans Drive Sunnyvale, CA 94089-11361 United States

Tel: 1-800-635-5577
Fax: 1-408-548-6439
Email: om@moldev.com



Scientific News
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
The US ARL in Maryland Combines Raman Spectroscopy and AFM
Characterizing electrochemical energy storage materials.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!