Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Join | Sign in
Home>Videos>This Video
  Videos

Return

Optical Sensors for Quantification of Intracellular Redox Potentials
Edinburgh University

Redox signaling is important in determining cell fate decisions and plays a pivotal role in the pathology of diseases such as cancer and neurodegeneration. There are significant challenges in quantitatively measuring intracellular redox potentials, and in this presentation, I will introduce a new approach. This approach is based on the use of nanosensors which comprise molecules that sense the local redox potential, assembled on a gold nanoshell. Since the Raman spectrum of the sensor molecule changes depending on its oxidation state and since the nanoshell allows a huge enhancement of the Raman spectrum, intracellular potential can be calculated by a simple optical measurement. The nanosensors can be controllably delivered cells, without any toxic effects, allowing redox potential to be monitored in a reversible, non-invasive manner over a previously unattainable potential range encompassing both superphysiological and physiological oxidative stress. In this presentation, the concept, the reporter molecules and the technique will be introduced. Furthermore, I will discuss how we have used this approach to study the regulation of redox potential in apoptosis and have correlated redox potential changes with changes in caspase activity.

Request more information
Company product page


Access to this article and other content is for registered users.

Join the Technology Networks Community

  • Access to the latest scientific news, products and research through Technology Networks
  • Upload and share your posters on ePosters
  • View a library of 1,800+ scientific and medical posters
  • A library of 3,000+ scientific videos on LabTube


Sign In



Forgotten your details? Click Here
If you already have an account with Technology Networks, please use your existing login details. If you do not yet have an account please join here.

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Shining A New Light On The Immune System
Scientists at the University of St Andrews have developed a revolutionary method of identifying cells of the immune system with “molecular fingerprints” which could pave the way for the rapid detection of conditions such as leukaemia and lymphoma from a small blood sample.
Holes in Gold Enhance Molecular Sensing
Electrochemical techniques produce tuneable porous gold films, where the empty spaces enhance light scattering and sensing signals.
Damming hemorrhagic diseases
A potential mechanism to combat diseases caused by haemorrhagic fever viruses has been discovered by researchers.
Cause of Wheat Resistance to Scab Discovered
Synchrotron research could give rise to better yields and varieties.
New Research Into Health Benefits Of Coffee
New research has brought us closer to being able to understand the health benefits of coffee.
Urine Profiles Provide Clues To How Obesity Causes Disease
Scientists have identified chemical markers in urine associated with body mass, providing insights into how obesity causes disease.
Using Raman to Study Graphene
Renishaw inVia system will be used for metrology studies and to set standards for graphene.
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
NMR ‘Fingerprinting’ for Monoclonal Antibodies
Study by NIST researchers shows the use of NMR spectroscopy for measuring the structural congfiguration of monoclonal antibodies.
Plant Cell Structure Discovery Could Lead to Improved Renewable Materials
Researchers investigate the polymer xylan.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters