Corporate Banner
Satellite Banner
Spectroscopy
Scientific Community
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

Conformational Changes Induced by Nanomaterials: Functional Implications
SELECTBIO

The interaction of nanoparticles with body fluids may induce conformational changes in the proteins present in the medium. Such interactions could induce functional loss or important modifications in some proteins, and trigger cellular events induced by the NP-protein moiety. As metal oxide nanoparticles are widely used for various applications, the interaction of four different metal oxide nanoparticles (ZnO, TiO2, CeO2 and Al2O3) with three of the main protein fractions from human plasma (albumin, fibrinogen and globulins) was characterized by fluorescence and Fourier-transform infrared (FTIR) spectroscopy. The pattern of nanoparticle-protein interaction was shown to vary from a strong interaction with ZnO nanoparticles, which induced a decrease in the thermal stability of fibrinogen and albumin at a low temperature, and interferes with the clotting of fibrinogen, to a slight or null interaction with Al2O3 nanoparticles at physiological pH. The influence of pH was also characterized for albumin, with the interaction showing an important dependence on the surface charge of the nanoparticles. Metal oxide nanoparticles induced conformational changes in the secondary structure of albumin, principally the transformation of α-helices into β-sheet structures. This interaction, with the exception of Al2O3 nanoparticles at basic pH, could take place in domain II of the protein, formed mainly by hydrophobic and positive residues.

Request more information
Company product page


Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Revealing the Secrets of 19th Century Fashion Industry
The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses.
How Nanoparticles Damage Immune Cells
New evidence points to protein oxidation, a common means of molecular damage.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Innovation Boosts Study of Fragile Biological Samples
Researchers have found a simple new way to study very delicate biological samples – like proteins at work in photosynthesis and components of protein-making machines called ribosomes – at the atomic scale using SLAC's X-ray laser.
Clues for Battling Botulism
Scientists decipher details of deadly toxin's cloaking mechanism that could guide development of new vaccines, treatments.
The US ARL in Maryland Combines Raman Spectroscopy and AFM
Characterizing electrochemical energy storage materials.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!