Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Liver Cells Grown From Patients’ Skin Cells Could Lead to Treatment of Liver Diseases

Published: Monday, October 12, 2009
Last Updated: Monday, October 12, 2009
Bookmark and Share
Wisconsin scientists have successfully produced liver cells from patients’ skin cells opening the possibility of treating liver diseases.

Wisconsin scientists have successfully produced liver cells from patients’ skin cells opening the possibility of treating a wide range of diseases that affect liver function. The study was led by Stephen A. Duncan, D.Phil, Marcus Professor in Human and Molecular Genetics, and professor of cell biology, neurobiology and anatomy, along with postdoctoral fellow Karim Si-Tayeb, PhD, and graduate student Ms. Fallon Noto.

“This is a crucial step forward towards developing therapies that can potentially replace the need for scarce liver transplants, currently the only treatment for most advanced liver disease,” says Dr. Duncan.

Liver disease is the fourth leading cause of death among middle aged adults in the United States. Loss of liver function can be caused by several factors, including genetic mutations, infections with hepatitis viruses, by excessive alcohol consumption, or chronic use of some prescription drugs. When liver function goes awry it can result in a wide variety of disorders including diabetes and atherosclerosis and in many cases is fatal.

The Medical College research team generated patient–specific liver cells by first repeating the work of James Thomson and colleagues at University of Wisconsin-Madison who showed that skin cells can be reprogrammed to become cells that resemble embryonic stem cells.

They then tricked the skin–derived pluripotent stem cells into forming liver cells by mimicking the normal processes through which liver cells are made during embryonic development. Pluripotent stem cells are so named because of their capacity to develop into any one of the more than 200 cell types in the human body.

At the end of this process, the researchers found that they were able to very easily produce large numbers of relatively pure liver cells in laboratory culture dishes. “We were excited to discover that the liver cells produced from human skin cells were able to perform many of the activities associated with healthy adult liver function and that the cells could be injected into mouse livers where they integrated and were capable of making human liver proteins,” says Dr. Duncan.

Several studies have shown that liver cells generated from embryonic stem cells could potentially be used for therapy. However, the possible use of such cells is limited by ethical considerations associated with the generation of embryonic stem cells from preimplantation embryos and the fact that embryonic stem cells do not have the same genetic make-up as the patient.

Although the investigations are still at an early stage the researchers believe that the reprogrammed skin cells could be used to investigate and potentially treat metabolic liver disease. The liver may be particularly suitable for stem-cell based therapies because it has a remarkable capacity to regenerate. It is interesting to note that the regenerative nature of the liver was referenced in the ancient Greek tale of Prometheus. When Prometheus was caught stealing the gift of fire from Zeus, he was punished by having his liver eaten daily by an eagle. This provided the eagle with an everlasting meal because each night the liver of Prometheus would re-grow.

The liver is a central regulator of the body’s metabolism and is responsible for controlling sugar and cholesterol levels, secretion of a variety of hormones, production of blood clotting factors, and has an essential role in preventing toxins from damaging other organs in the body.

It is possible that in the future a small piece of skin from a patient with loss of liver function could be used to produce healthy liver cells, replacing the diseased liver with normal tissue.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Induced Stem Cells May Unmask Cancer at Earliest Stage
A team of Wisconsin scientists observes the onset of the blood cancer leukemia by coaxing healthy and diseased human bone marrow to become embryonic-like stem cells.
Tuesday, February 08, 2011
Gene Regulating Human Brain Development Identified
New findings by Wisconsin-Madison scientists reveal the main genetic factor responsible for instructing cells at the earliest stages of embryonic development.
Friday, July 02, 2010
California Company Licenses Human Embryonic Stem Cell Technology from WARF
BioTime signs licensing agreement with WARF for 173 patents and patent applications relating to human embryonic stem cell technology created at the UW-Madison.
Tuesday, January 15, 2008
Stem Cells Show Power to Predict Disease, Drug Toxicity
Scientists have used human embryonic stem cells to predict the toxic effects of drugs and provide chemical clues to diagnosing disease.
Monday, December 10, 2007
UW-Madison Scientists Guide Human Skin Cells to Embryonic State
Researchers reports the genetic reprogramming of human skin cells to create cells indistinguishable from embryonic stem cells in a paper to be published online.
Thursday, November 22, 2007
Stem Cell Therapy Rescues Motor Neurons in ALS Model
University of Wisconsin-Madison scientists show that it is possible to rescue the dying neurons characteristics of ALS by using cell-based therapies.
Wednesday, August 01, 2007
UW Launches Study Testing Adult Stem Cells for Repair of Heart Damage
The University of Wisconsin will take part in a clinical trial that involves investigation of patient’s own stem cells to treat severe coronary artery disease.
Tuesday, March 20, 2007
Scientific News
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Scientists Sequence Genome Of Worm That Can Regrow Body Parts
Worm’s genome could lead to better understanding of its regenerative prowess and advance stem cell biology.
Stem Cell-Derived 'Organoids' Help Predict Neural Toxicity
A new system developed by scientists may provide a faster, cheaper and more biologically relevant way to screen drugs and chemicals that could harm the developing brain.
New Way To Repair Nerves
Tufts University biomedical engineers recently published the first report of a promising new way to induce human mesenchymal stem cells to differentiate into neuron-like cells:treating them with exosomes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos