Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Liver Cells Grown From Patients’ Skin Cells Could Lead to Treatment of Liver Diseases

Published: Monday, October 12, 2009
Last Updated: Monday, October 12, 2009
Bookmark and Share
Wisconsin scientists have successfully produced liver cells from patients’ skin cells opening the possibility of treating liver diseases.

Wisconsin scientists have successfully produced liver cells from patients’ skin cells opening the possibility of treating a wide range of diseases that affect liver function. The study was led by Stephen A. Duncan, D.Phil, Marcus Professor in Human and Molecular Genetics, and professor of cell biology, neurobiology and anatomy, along with postdoctoral fellow Karim Si-Tayeb, PhD, and graduate student Ms. Fallon Noto.

“This is a crucial step forward towards developing therapies that can potentially replace the need for scarce liver transplants, currently the only treatment for most advanced liver disease,” says Dr. Duncan.

Liver disease is the fourth leading cause of death among middle aged adults in the United States. Loss of liver function can be caused by several factors, including genetic mutations, infections with hepatitis viruses, by excessive alcohol consumption, or chronic use of some prescription drugs. When liver function goes awry it can result in a wide variety of disorders including diabetes and atherosclerosis and in many cases is fatal.

The Medical College research team generated patient–specific liver cells by first repeating the work of James Thomson and colleagues at University of Wisconsin-Madison who showed that skin cells can be reprogrammed to become cells that resemble embryonic stem cells.

They then tricked the skin–derived pluripotent stem cells into forming liver cells by mimicking the normal processes through which liver cells are made during embryonic development. Pluripotent stem cells are so named because of their capacity to develop into any one of the more than 200 cell types in the human body.

At the end of this process, the researchers found that they were able to very easily produce large numbers of relatively pure liver cells in laboratory culture dishes. “We were excited to discover that the liver cells produced from human skin cells were able to perform many of the activities associated with healthy adult liver function and that the cells could be injected into mouse livers where they integrated and were capable of making human liver proteins,” says Dr. Duncan.

Several studies have shown that liver cells generated from embryonic stem cells could potentially be used for therapy. However, the possible use of such cells is limited by ethical considerations associated with the generation of embryonic stem cells from preimplantation embryos and the fact that embryonic stem cells do not have the same genetic make-up as the patient.

Although the investigations are still at an early stage the researchers believe that the reprogrammed skin cells could be used to investigate and potentially treat metabolic liver disease. The liver may be particularly suitable for stem-cell based therapies because it has a remarkable capacity to regenerate. It is interesting to note that the regenerative nature of the liver was referenced in the ancient Greek tale of Prometheus. When Prometheus was caught stealing the gift of fire from Zeus, he was punished by having his liver eaten daily by an eagle. This provided the eagle with an everlasting meal because each night the liver of Prometheus would re-grow.

The liver is a central regulator of the body’s metabolism and is responsible for controlling sugar and cholesterol levels, secretion of a variety of hormones, production of blood clotting factors, and has an essential role in preventing toxins from damaging other organs in the body.

It is possible that in the future a small piece of skin from a patient with loss of liver function could be used to produce healthy liver cells, replacing the diseased liver with normal tissue.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Thursday, September 22, 2016
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Friday, April 29, 2016
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Friday, February 12, 2016
New Induced Stem Cells May Unmask Cancer at Earliest Stage
A team of Wisconsin scientists observes the onset of the blood cancer leukemia by coaxing healthy and diseased human bone marrow to become embryonic-like stem cells.
Tuesday, February 08, 2011
Gene Regulating Human Brain Development Identified
New findings by Wisconsin-Madison scientists reveal the main genetic factor responsible for instructing cells at the earliest stages of embryonic development.
Friday, July 02, 2010
California Company Licenses Human Embryonic Stem Cell Technology from WARF
BioTime signs licensing agreement with WARF for 173 patents and patent applications relating to human embryonic stem cell technology created at the UW-Madison.
Tuesday, January 15, 2008
Stem Cells Show Power to Predict Disease, Drug Toxicity
Scientists have used human embryonic stem cells to predict the toxic effects of drugs and provide chemical clues to diagnosing disease.
Monday, December 10, 2007
UW-Madison Scientists Guide Human Skin Cells to Embryonic State
Researchers reports the genetic reprogramming of human skin cells to create cells indistinguishable from embryonic stem cells in a paper to be published online.
Thursday, November 22, 2007
Stem Cell Therapy Rescues Motor Neurons in ALS Model
University of Wisconsin-Madison scientists show that it is possible to rescue the dying neurons characteristics of ALS by using cell-based therapies.
Wednesday, August 01, 2007
UW Launches Study Testing Adult Stem Cells for Repair of Heart Damage
The University of Wisconsin will take part in a clinical trial that involves investigation of patient’s own stem cells to treat severe coronary artery disease.
Tuesday, March 20, 2007
Scientific News
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
1960s Antibiotics Show Promise for TB Therapy
Research suggests antibiotics introduced in 1963 to treat bacterial infections show promise for tuberculosis therapy.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore the Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Using Stem Cells to Grow a 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!