Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Bioreactor for Stem Cell Derived Hollow Organ Generation

Published: Thursday, December 22, 2011
Last Updated: Thursday, December 22, 2011
Bookmark and Share
InBreath Bioreactor designed for cell seeding and culturing on both surfaces of a tubular matrix.

Harvard Apparatus in conjunction with Dr. Paolo Macchiarini, [Macciarini, P. et al. Clinical transplantation of a tissue-engineered airway, Lancet, 372, 2023-2030, (2008)] has developed the InBreath Whole Organ Bioreactor.

The InBreath is one of the world's first commercially available bioreactors for tubular organ regeneration.

Designed for tissue engineering and regenerative medicine research applications using trachea, esophagus, intestines, blood vessels or virtually any hollow organ, the InBreath is precision engineered for cell seeding and culturing on both intraluminal and extraluminal surfaces of a tubular matrix.

A polymer-based culture chamber houses the scaffold and culture medium for the entire duration of the organ generation procedure.

An organ scaffold is mounted to the corresponding scaffold holder of appropriate diameter.

Each holder features a reduced diameter central portion which functions to expose the intraluminal surface of the matrix for cell seeding and culturing.

Secondary elements or “paddles” moving with the scaffold holder produce continuous mixing of the culture medium to increase oxygenation and mass transport.

The cell/scaffold construct is rotated on the holder by a brushless DC motor (0-5 rpm adjustable) which is completely separated from the culture compartment.

A co-axial conduit links the inner chamber to the external environment through an interface at the chamber wall.

The detachable connection between the motor unit and the culture chamber allows the latter to be removed for maintenance while the motor unit remains stationed in the incubator.

An external control unit regulates and monitors rotation. Autoclavability, ease of handling under sterile conditions, reliability and precision ensures full compatibility of the device with GLP rules.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Mini-kidneys Successfully Grown from Stem Cells
Researchers from Murdoch Childrens Research Institute have perfected a method of turning stem cells into mini-kidneys for use in drug screening, disease modelling and cell therapy.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos