Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Roche’s xCELLigence Cardio Instrument Used to Study Stem Cell-Derived Cardiomyocytes

Published: Monday, February 13, 2012
Last Updated: Monday, February 13, 2012
Bookmark and Share
Instrument detected beating rhythm and proarrhythmic effects of nine different compounds on a monolayer of cells, providing evidence for the potential of future screening assays.

In an effort to improve preclinical cardiotoxicity assays, reduce drug testing attrition rates, and ensure drug safety, collaborating scientists at the University Medical Center Utrecht in the Netherlands, and Bioscience Department of AstraZeneca R&D, Mölndal, Sweden, have tested Roche’s xCELLigence Cardio Instrument. Their goal was to determine whether impedance recordings are a useful way to detect compound effects on beating frequency of cardiomyocytes, derived either from human induced pluripotent stem cells (hiPS), or from mouse embryonic stem cells (mESC). The xCELLigence Cardio Instrument is an impedance sensing instrument capable of reading signals at high sampling rates, making it possible to measure the contraction movements of cardiomyocytes in contact with sensor microelectrodes.

In this study (1), the effects of nine compounds were tested on beating frequency (beats per minute, bpm) of hiPS and mESC cardiomyocytes. The authors reported, “The results of this initial study show that, under the right conditions, the beating frequency of a monolayer of cells can be stably recorded over several days. In addition, the xCELLigence System detects changes in beating frequency and amplitude caused by added reference compounds.”

The authors conclude that xCELLigence Cardio instrument has potential for 96-well-throughput cardiotoxicity screening of the effects of compounds on rhythmic beating patterns of cardiomyocytes. They underscored the need for continuous improvements in the maturation of available cardiomyocytes and in further validation of the assay on an extended set of reference compounds with known in-vivo effects.  They also indicated that the production of distinct subtypes of ventricular, atrial and nodal cardiomyocytes could open up new areas of screening for arrhythmia and cardiotoxicity.

(1) Malin K.B. Jonsson, Qing-Dong Wang, Bruno Becker: Impedance-Based Detection of Beating Rhythm and Proarrhythmic Effects of Compounds on Stem Cell-Derived Cardiomyocytes.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First European Laboratory Obtains Accreditation for New Tissue-Typing Method for Stem Cell Transplants
Tests based on next-generation sequencing with Roche’s GS Junior System.
Thursday, February 28, 2013
Birmingham hospital uses Roche automation solution at blood sciences laboratory
Roche’s automated track system is being used at Queen Elizabeth Hospital to streamline processes and improve turnaround times.
Saturday, June 02, 2012
Roche’s new RTCA Cardio Instrument for Label-Free Functional Cardiomyocyte Toxicity Testing
New medium-throughput cell analyzer utilizes impedance readings to monitor cardiac beating and cellular events in real time.
Wednesday, September 29, 2010
Roche Applied Science Introduces new xCELLigence RTCA MP Instrument
The xCELLigence RTCA MP allows high throughput online-measurement of cell activities without labeling.
Friday, December 05, 2008
454 Sequencing at the Forefront of Bone Marrow and Stem Cell Therapy Research
Roche Genome Sequencer FLX System will create new opportunities for HLA research at the Blood Centre Linz, Austria.
Monday, June 30, 2008
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Defining Immortality of Stem Cells
Researchers defined the mechanisms underlying increased protein quality control of pluripotent stem cells.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Stem Cells Police Themselves to Reduce Scarring
Scientists have discovered stem cells in muscle fibers change gene expressions to respond to injury.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
Topical Immunotherapy Effective Against Early Skin Cancer
Combination of two commonly used drugs triggers immune response against precancerous skin lesions.
Factors Behind Suppression of Stem Cell Mobilization Revealed
The findings could lead to improvements in transplantation therapy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!