Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Georgia Tech Develops Computational Algorithm

Published: Tuesday, February 14, 2012
Last Updated: Tuesday, February 14, 2012
Bookmark and Share
High-throughput DNA sequencing technologies are leading to a revolution in how clinicians diagnose and treat cancer. The molecular profiles of individual tumors are beginning to be used in the design of chemotherapeutic programs optimized for the treatment of individual patients.

The real revolution, however, is coming with the emerging capability to inexpensively and accurately sequence the entire genome of cancers, allowing for the identification of specific mutations responsible for the disease in individual patients.

There is only one downside. Those sequencing technologies provide massive amounts of data that are not easily processed and translated by scientists. That’s why Georgia Tech has created a new data analysis algorithm that quickly transforms complex RNA sequence data into usable content for biologists and clinicians. The RNA-Seq analysis pipeline (R-SAP) was developed by School of Biology Professor John McDonald and Ph.D. Bioinformatics candidate Vinay Mittal. Details of the pipeline are published in the journal Nucleic Acids Research.

“A major bottleneck in the realization of the dream of personalized medicine is no longer technological. It’s computational,” said McDonald, director of Georgia Tech’s newly created Integrated Cancer Research Center. “R-SAP follows a hierarchical decision-making procedure to accurately characterize various classes of gene transcripts in cancer samples.”

There are at least 23,000 pieces of RNA in the human genome that encode the sequence of proteins. Millions of other pieces help regulate the production of proteins. R-SAP is able to quickly determine every gene’s level of RNA expression and provide information about splice variants, biomarkers and chimeric RNAs. Biologists and clinicians will be able to more readily use this data to compare the RNA profiles or “transcriptomes” of normal cells with those of individual cancers and thereby be in a better position to develop optimized personal therapies.

Personalized approaches to cancer medicine are already in widespread use for a few “cancer biomarkers” including variants of the BRAC 1 gene that can be used to identify women with a high risk of developing breast and ovarian cancer.

“Our goal was to design a pipeline that is easily installable with parallel processing capabilities,” said Mittal. “R-SAP can make 100 million reads in just 90 minutes. Running the program simultaneously on multiple CPUs can further decrease that time.”

R-SAP is open source software, freely accessible at the McDonald Lab website.

“This is another example of Georgia Tech’s ability to merge computer technology with science to create an essential feature of next-generation bioinformatics tools,” said McDonald. “We hope that R-SAP will be a useful and user-friendly instrument for scientists and clinicians in the field of cancer biology.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Microparticles Create Localized Control of Stem Cell Differentiation; Reduce Growth Factor Use
Scientists report advances in the growth of 3D cellular structures.
Friday, July 12, 2013
Study Shows that Delivering Stem Cells Improves Repair of Major Bone Injuries in Rats
The study reinforces the potential value of stem cells in repairing major injuries involving the loss of bone structure.
Thursday, January 21, 2010
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!