Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find New Drug Target for Hard-to-Treat Leukaemia

Published: Friday, March 30, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Cancer Research UK scientists have discovered a promising new approach to treat a type of myeloid leukaemia – a cancer with limited treatment options and relatively poor survival.

The team at the Paterson Institute for Cancer Research at The University of Manchester have identified a new drug target – an enzyme called LSD1 – for an aggressive form of acute myeloid leukaemia called mixed lineage leukaemia (MLL).  LSD1 helps control whether certain cancer-causing genes are turned on or off. Blocking the enzyme prevents the production of proteins that drive the cancer.

Scientists at Cancer Research UK’s Paterson Drug Discovery Unit synthesised molecules to block this enzyme, and lead author Dr Tim Somervaille, group leader at Cancer Research UK’s Leukaemia Biology Laboratory, showed that they could stop the growth of leukaemia cells – taken from patients with the disease, and also from mice.

Every year in the UK around 2,380 people are diagnosed with acute myeloid leukaemia and of these it is estimated that around five percent – around 120 patients – have the MLL subtype.
Survival for acute myeloid leukaemia remains low although it has improved. Currently, around forty percent of people aged under 60 with the MLL-AF9 subtype survive the disease for five years or more.

Dr Somervaille said: “It’s difficult to successfully treat patients with this type of leukaemia. There aren’t any targeted drugs available and many patients can’t be cured with current treatments, such as intensive chemotherapy and bone marrow transplantation.  So there’s an urgent need for new drugs.

“We’re very pleased to have tested molecules that homes in on an enzyme called LSD1 in a completely new approach to stop the growth of this disease. And we also believe this target may be important in a range of other types of cancer, but more research is needed.

“The next stage is to develop molecules like this one further, and run clinical trials to see if they could be used to treat patients in the future.”

Dr Julie Sharp, Cancer Research UK’s senior science information manager, said: “It’s great news that this molecule could provide a new targeted way to treat an aggressive type of leukaemia, for which treatment options are limited.

“Our scientists have been at the heart of progress that has seen great improvements in the treatment of leukaemia. For example, we developed some of the first important drugs for blood cancers and pioneered treatment with radiotherapy. And we’ve revealed many of the gene changes that fuel the development and growth of blood cancers, paving the way for future treatments.

“But there is much more to be done and, only with continued public support, can our scientists around the UK continue their groundbreaking research into leukaemia to learn more about the biology of the disease – and improve survival.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Why Bowel Cancer Sometimes Outsmarts Treatment
New study challenges the prevailing view of how bowel cancer develops in the large intestine.
Tuesday, December 02, 2014
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!