Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Find New Drug Target for Hard-to-Treat Leukaemia

Published: Friday, March 30, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Cancer Research UK scientists have discovered a promising new approach to treat a type of myeloid leukaemia – a cancer with limited treatment options and relatively poor survival.

The team at the Paterson Institute for Cancer Research at The University of Manchester have identified a new drug target – an enzyme called LSD1 – for an aggressive form of acute myeloid leukaemia called mixed lineage leukaemia (MLL).  LSD1 helps control whether certain cancer-causing genes are turned on or off. Blocking the enzyme prevents the production of proteins that drive the cancer.

Scientists at Cancer Research UK’s Paterson Drug Discovery Unit synthesised molecules to block this enzyme, and lead author Dr Tim Somervaille, group leader at Cancer Research UK’s Leukaemia Biology Laboratory, showed that they could stop the growth of leukaemia cells – taken from patients with the disease, and also from mice.

Every year in the UK around 2,380 people are diagnosed with acute myeloid leukaemia and of these it is estimated that around five percent – around 120 patients – have the MLL subtype.
Survival for acute myeloid leukaemia remains low although it has improved. Currently, around forty percent of people aged under 60 with the MLL-AF9 subtype survive the disease for five years or more.

Dr Somervaille said: “It’s difficult to successfully treat patients with this type of leukaemia. There aren’t any targeted drugs available and many patients can’t be cured with current treatments, such as intensive chemotherapy and bone marrow transplantation.  So there’s an urgent need for new drugs.

“We’re very pleased to have tested molecules that homes in on an enzyme called LSD1 in a completely new approach to stop the growth of this disease. And we also believe this target may be important in a range of other types of cancer, but more research is needed.

“The next stage is to develop molecules like this one further, and run clinical trials to see if they could be used to treat patients in the future.”

Dr Julie Sharp, Cancer Research UK’s senior science information manager, said: “It’s great news that this molecule could provide a new targeted way to treat an aggressive type of leukaemia, for which treatment options are limited.

“Our scientists have been at the heart of progress that has seen great improvements in the treatment of leukaemia. For example, we developed some of the first important drugs for blood cancers and pioneered treatment with radiotherapy. And we’ve revealed many of the gene changes that fuel the development and growth of blood cancers, paving the way for future treatments.

“But there is much more to be done and, only with continued public support, can our scientists around the UK continue their groundbreaking research into leukaemia to learn more about the biology of the disease – and improve survival.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Why Bowel Cancer Sometimes Outsmarts Treatment
New study challenges the prevailing view of how bowel cancer develops in the large intestine.
Tuesday, December 02, 2014
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos