Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

StemCells, Inc's Releases Milestone Clinical Trial Results in Pelizaeus-Merzbacher Disease

Published: Tuesday, April 03, 2012
Last Updated: Tuesday, April 03, 2012
Bookmark and Share
Study shows evidence of myelination following human neural stem cell transplantation.

StemCells, Inc. announced preliminary evidence of progressive and durable donor-cell derived myelination in all four patients who underwent transplantation with the Company's proprietary HuCNS-SC(R) cells (purified human neural stem cells) in its clinical trial for Pelizaeus-Merzbacher disease (PMD), a rare hypo-myelination disorder in children. In addition, clinical assessment revealed small but measureable gains in motor and/or cognitive function in three of the four patients; the fourth patient remained clinically stable. The study was conducted by researchers at the University of California, San Francisco (UCSF).

A summary of the trial results were presented Saturday, March 31, at the 2012 European Leukodystrophy Association (ELA) Families/Scientists Meeting in Paris. The findings are being submitted for publication in a peer-reviewed scientific journal.

"The results from this Phase I study are meaningful and important," said study investigator Nalin Gupta, MD, PhD, UCSF associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital. "The safety and clinical outcomes a year after transplantation in this Phase I study, combined with durable radiological signals of myelin formation, provide objective evidence of a biological effect of HuCNS-SC transplantation that addresses the fundamental basis of the pathology in the brain of PMD patients. We also wish to recognize the families' contribution to this study. These advances would not be possible without their willingness to participate in this clinical research."

Patients with PMD have a defective gene, which leads to insufficient myelin in the brain. The disease occurs only in males, and those with the most severe form of the disease, connatal PMD, are significantly disabled from birth and usually die, within the first decade of life. The study was the first to test transplantation of neural stem cells as a potential treatment for a myelination disorder. Myelin is the substance that surrounds and insulates nerve cells' communications fibers (also known as axons). Without sufficient myelination, these fibers are unable to properly transmit nerve impulses, leading to a progressive loss of neurological function, and death.

The open-label Phase I trial, conducted between February 2010 and February 2012, enrolled four patients with the connatal form of PMD, between the ages of 14 months and 5 years, and was designed to assess safety and preliminary efficacy of the intervention. The study used magnetic resonance (MR) imaging, commonly employed in other neurological diseases, to explore signs of myelination related to the transplanted neural stem cells. The HuCNS-SC transplants were surgically delivered to multiple sites within the frontal lobes of the brain. Patients also received immunosuppression for nine months following transplantation and underwent intensive follow-up neurological assessments and MR imaging for twelve months following transplantation. A separate four-year observational study will continue to monitor and report the future progress for all four patients.

At the one-year interval, MR imaging showed changes compatible with increased myelination in the region of the transplantation. The MR signs of myelination persisted after the withdrawal of immunosuppression at nine months and were also found to progress over time. The development of new myelin signals is unprecedented in patients with connatal PMD and is consistent with HuCNS-SC engraftment.

"The finding of myelin formation in this first exploratory study is indeed very encouraging," said Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc. "We believe that the results of this trial provide proof-of-concept and a compelling rationale for the Company to begin planning for a controlled Phase II study in PMD. These results may also have implications for other leukodystrophies, as well as more common myelin disorders including transverse myelitis, multiple sclerosis and periventricular white matter injury seen in Cerebral Palsy. We are very pleased to be working with investigators at UCSF and deeply appreciate the critical research expertise they have dedicated to the trial."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

StemCells, Inc. Reports Positive Interim Data from Spinal Cord Injury Trial
Cells and procedure well tolerated; gains in sensory function confirmed.
Thursday, September 06, 2012
Scientific News
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
1960s Antibiotics Show Promise for TB Therapy
Research suggests antibiotics introduced in 1963 to treat bacterial infections show promise for tuberculosis therapy.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore the Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Using Stem Cells to Grow a 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!