Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Finished Heart Switches Stem Cells Off

Published: Tuesday, July 17, 2012
Last Updated: Tuesday, July 17, 2012
Bookmark and Share
Transcription factor Ajuba regulates stem cell activity in the heart during embryonic development.

It is not unusual for babies to be born with congenital heart defects. This is because the development of the heart in the embryo is a process which is not only extremely complex, but also error-prone. Scientists from the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now identified a key molecule that plays a central role in regulating the function of stem cells in the heart. As a result, not only could congenital heart defects be avoided in future, but new ways of stimulating the regeneration of damaged hearts in adults may be opened up.

It's a long road from a cluster of cells to a finished heart. Cell division transforms what starts out as a collection of only a few cardiac stem cells into an ever-larger structure from which the various parts of the heart, such as ventricles, atria, valves and coronary vessels, develop. This involves the stem and precursor cells undergoing a complex process which, in addition to tightly regulated cell division, also includes cell migration, differentiation and specialisation. Once the heart is complete, the stem cells are finally switched off.

Scientists from the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now discovered how major parts of this development process are regulated. Their search initially focused on finding binding partners for transcription factor Isl1. Isl1 is characteristic of a specific group of cardiac stem cells which are consequently also known as Isl1+ cells. During their search, the researchers came across Ajuba, a transcription factor from the group of LIM proteins. "We then took a closer a look at the interaction between these two molecules and came to the conclusion that Ajuba must be an important switch", says Gergana Dobreva, head of the "Origin of Cardiac Cell Lineages" Research Group at the Bad Nauheim-based Max Planck Institute.

Using an animal model, the scientists then investigated the effects of a defective switch on cardiac development. Embryonic development can be investigated particularly effectively in the zebrafish. The Bad Nauheim-based researchers therefore produced a genetically modified fish that lacked a functioning Ajuba protein. Cardiac development in these fishes was in fact severely disrupted. In addition to deformation of the heart, caused by twisting of the cardiac axis, what particularly struck the researchers was a difference in size in comparison with control animals. "In almost all the investigated fish we observed a dramatic enlargement of the heart. If Ajuba is absent, there is clearly no other switch that finally silences the Isl1-controlled part of cardiac development", says Dobreva.

Further investigations revealed that the enlargement of the heart is in fact attributable to a greatly increased number of cardiac muscle cells. The reason for this was in turn that the number of Isl1+ cells, i.e. the cardiac muscle precursor cells, was distinctly raised right from an early phase of development. Ajuba is a decisive factor in controlling stem cell activity: it binds to Isl1 molecules, thus blocking their stimulant effect.

The results from the study could have potential future applications. "Once we understand how cardiac development is regulated, we will also be more familiar with the causes of congenital heart defects and will consequently be able to consider therapeutic approaches", comments Dobreva. Damaged adult hearts can also be repaired in this way: "One possibility would be to optimise the production of replacement cells from embryonic or artificially produced stem cells in the laboratory. Silencing Ajuba in these cells might enhance their development into functional cardiac muscle cells. Sufficient replacement cells for treating patients could be cultured in this way." Another possibility is to stimulate stem cell activity by silencing Ajuba in the damaged heart and so cause the heart to regenerate itself. Further studies are now set to investigate how feasible this might be.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Thursday, November 12, 2015
A Gene For Brain Size - Only Found In Humans
Following the traces of evolution: Max Planck Researchers find a key to the reproduction of brain stem cells.
Tuesday, March 03, 2015
Somatic Stem Cells Obtained from Skin Cells for First Time Ever
Skipping pluripotency 'detour,' Max Planck researcher Prof. Schöler again takes lead in stem cell research.
Monday, March 26, 2012
Scientists Use Silk from the Tasar Silkworm as a Scaffold for Heart Tissue
Scientists from the Max Planck Institute for Heart and Lung Research in Bad Nauheim are seeking to restore complete cardiac function with the help of artificial cardiac tissue.
Monday, January 30, 2012
Scientific News
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skin Cells Turned into Heart Cells and Brain Cells Using Drugs
In a scientific first, Gladstone researchers have used chemical drugs to convert skin cells into heart cells and brain cells, without adding any external genes.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!