Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

SETsquared-supported Research to Improve Stem Cell Therapy Results

Published: Monday, August 27, 2012
Last Updated: Monday, August 27, 2012
Bookmark and Share
Promises better recovery from strokes, brain injuries and diseases such as Parkinson’s.

Collaboration between two universities in the USA and UK, supported by funding from the SETsquared Partnership, looks set to help improve the results of stem cell therapies for brain and spinal cord injuries, strokes and diseases such as Parkinson’s.

Researchers from the University of California, Irvine and the labs of Drs. Michael Hughes and Fatima Labeed at the Centre for Biomedical Engineering, University of Surrey have worked together on identifying the most effective stem cells, helping to increase the benefits from treatment.

The researchers met at a meeting in Bath organized by SETsquared.

Funding provided by SETsquared was used primarily for travel, and also to buy some supplies needed for the research work.

The funding was part of a £1.5m award from the Office of Science and Technology (OST) in April 2006 to create relationships of lasting value with commercial focus around the high-technology research and development clusters of Southern England with those in Southern California.

The programme provided a five times return on the investment made by government. This is just an additional outcome to emerge from a relationship seeded through the programme.

“Without the support and funding from SETsquared, this collaboration simply would not have happened,” said Lisa Flanagan, Ph.D., assistant professor at the Department of Neurology and Sue and Bill Gross Stem Cell Research Center, University of California, Irvine.

“This project is an excellent example of how a relatively small financial stimulus, combined with networking meetings, can make a massive difference to collaborative research,” said Graham Harrison, Partnership Director at SETsquared.

Stem cells hold the promise of improving how we can repair the body following injury and disease.

For the brain and spinal cord, stem cell therapy is undergoing clinical trials, but one of the limiting factors is that half or less of the stem cells used have a beneficial effect, and it is difficult to tell the cells apart and work out which ones are effective.

The research project addresses this issue by using the biophysical characteristics of stem cells to distinguish them.

The team used a technique called dielectrophoresis (DEP) to analyze stem cells, and discovered that cell membrane capacitance predicts the treatment potential of stem cells.

“While we had already started to use DEP, Drs. Hughes and Labeed showed us how to get more out of it, which was the real turning point for us,” says Flanagan. “Although there’s lots of work to do, our research is showing real promise.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Biobank Storage Time Affects Blood Test Results
Study finds storage time of blood samples at a biobank may affect test results as much as patient age.
Transplanted Stem Cells Age Cells by 30 Years
Research suggests stem cell transplants are linked to an increase in immune cell's “molecular age” from blood cancer patients.
Commanding Stem Cells to Build Bone
Natural molecule can coax stem cells into regenerating bone tissue, researchers have discovered.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!