Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

UCLA Scientists Discover 'Missing Link' Between Blood Stem Cells, Immune System

Published: Wednesday, September 05, 2012
Last Updated: Wednesday, September 05, 2012
Bookmark and Share
Finding will lead to a greater understanding of how a healthy immune system is produced and how disease can lead to poor immune function.

The research was done using human bone marrow, which contains all the stem cells that produce blood during post-natal life.
"We felt it was especially important to do these studies using human bone marrow, as most research into the development of the immune system has used mouse bone marrow," said the study's senior author, Dr. Gay Crooks, co-director of UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and a co-director of the cancer and stem-cell biology program at UCLA's Jonsson Comprehensive Cancer Center. "The few studies with human tissue have mostly used umbilical cord blood, which does not reflect the immune system of post-natal life."
The research team was "intrigued to find this particular bone marrow cell, because it opens up a lot of new possibilities in terms of understanding how human immunity is produced from stem cells throughout life," said Crooks, a professor of pathology and pediatrics.
Understanding the process of normal blood formation in human adults is a crucial step in shedding light on what goes wrong during the process that results in leukemias, cancers of the blood.
The findings appear Sept. 2 in the early online edition of the journal Nature Immunology.
Before this study, researchers had a fairly good idea of how to find and study the blood stem cells of the bone marrow. The stem cells live forever, reproduce themselves and give rise to all the cells of the blood. In the process, the stem cells divide and produce cells in intermediate stages of development called progenitors, which make various blood lineages, like red blood cells or platelets.
Crooks was most interested in the creation of the progenitors that form the entire immune system, which consists of many different cells called lymphocytes, each with a specialized function to fight infection.
"Like the stem cells, the progenitor cells are also very rare, so before we can study them, we needed to find the needle in the haystack," said Lisa Kohn, a member of the UCLA Medical Scientist Training Program and first author of the study.
Previous work had found a fairly mature type of lymphocyte progenitor with a limited ability to differentiate, but the new work describes a more primitive type of progenitor primed to produce the entire immune system, Kohn said.
Once the lymphoid-primed progenitor had been identified, Crooks and her team studied how gene expression changed during the earliest stages of its production from stem cells.
"The gene expression data convinced us that we had found a unique stage of development in the immune system," Crooks said. "There was a set of genes that the lymphoid-primed cell shares with the bone marrow stem cells and a unique gene expression of its own once it becomes active. This data provided us with an understanding of what genes are important in creating all the cells of the immune system. The information could allow us to manipulate bone marrow to help create a stronger immune system."
As a bone-marrow transplant clinician who treats children with many diseases, including leukemia and immune deficiency, Crooks is keenly interested in how the immune system is made and, more specifically, in potential new ways to speed that process along in her patients, whose immune systems are wiped out prior to transplant.
"The identification of a progenitor in human bone marrow primed for full lymphoid differentiation will now permit delineation of the molecular regulation of the first stages of lymphoid commitment in human hematopoiesis," the study states. "It will also allow understanding of how these processes are affected during aberrant hematopoiesis in disease states."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Understanding a Protein’s Role in Familial Alzheimer’s
Researchers have used genetic engineering of human iPSC’s to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD).
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
$100M gift launches Sanford Stem Cell Clinical Center
T. Denny Sanford has committed $100 million to the creation of the Sanford Stem Cell Clinical Center at the University of California, San Diego.
Wednesday, November 06, 2013
Grafted Limb Cells Acquire Molecular ‘Fingerprint’ of New Location
Findings further creation of regenerative therapies for humans.
Wednesday, October 30, 2013
From Mature Cells to Embryonic-Like Stem Cells
Bioengineers have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage.
Tuesday, October 22, 2013
Researchers Develop Stem Cell Therapies for Acute Lung Injury
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent.
Monday, October 21, 2013
Single Gene Mutation Linked to Neurological Disorders
Mutation could offer insights into Alzheimer’s, Parkinson’s and Huntigton’s Diseases.
Wednesday, October 16, 2013
Gene Repair Technique Could Have Many Applications
Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.
Tuesday, August 13, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos