Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Human Embryonic Stem Cells Could Help to Treat Deafness

Published: Thursday, September 20, 2012
Last Updated: Thursday, September 20, 2012
Bookmark and Share
A cure for deafness is a step closer after University of Sheffield scientists used human embryonic stem cells to treat a common form of hearing loss.

In research funded by the Medical Research Council and leading UK research charity, Action on Hearing Loss, experts from the University’s Department of Biomedical Sciences developed a method to turn human embryonic stem cells into ear cells.

They then transplanted them into deaf gerbils, obtaining a functional recovery that, on average, was of around 46 per cent. The improvement was evident about four weeks after administering the cells.

As well as proving that stem cells can be used to repair damaged hearing, it is hoped the breakthrough - published in the journal Nature - will lead to new treatments and therapies in the future.

The model of hearing loss successfully treated by the scientists is similar to a human condition known as auditory neuropathy, a form of deafness in which the damage occurs at the level of the cochlear nerve. It is thought to represent up to 15 per cent of the population across the world with profound hearing loss.

Dr Marcelo Rivolta, who led the project, said: “We developed a method to drive human embryonic stem cells to produce both hair cells and neurons, or nerve cells, but we only transplanted the neurons. We then used a technique called auditory brainstem evoked responses (ABR), which measures if the brain can perceive an electrical signal after sound stimulation. The responses of the treated animals were substantially better than those untreated, although the range of improvement was broad. Some subjects did very well, while in others recovery was poor.”

Auditory neuropathy is a type of deafness where the problem lies, not primarily with the hair cells, but in the connection of the hair cells with the brain.

Patients can be born with it and there are cases due to a genetic defect where a few responsible genes have already been identified.

However, there is increasing evidence that environmental factors, such as jaundice at birth and noise exposure later in life, play an important role, at least as risk factors.

Dr Rivolta added: “We believe this an important step forward. We have now a method to produce human cochlear sensory cells that we could use to develop new drugs and treatments, and to study the function of genes. And more importantly, we have the proof-of-concept that human stem cells could be used to repair the damaged ear.

“More research is needed. For instance, we want to understand the long term implications of this treatment and its safety. Moreover, while in auditory neuropathy patients that retain their hair cells the sole application of stem cells could be beneficial; those with more comprehensive damage may need a cochlear implant to compensate for the hair cell deficit. In these patients it is possible that stem cells should be administered in combination with a cochlear implant. It is therefore important to explore this interaction.”

Dr Ralph Holme, Head of Biomedical Research for Action on Hearing Loss, said: “The research we have funded at the University of Sheffield is tremendously encouraging and gives us real hope that it will be possible to fix the actual cause of some types of hearing loss in the future. For the millions of people for whom hearing loss is eroding their quality of life, this can’t come soon enough.”

Dr Paul Colville-Nash, Programme Manager for stem cell, developmental biology and regenerative medicine at the Medical Research Council, which co-funded the research, added: “This is promising research that demonstrates further proof-of-concept that stem cells have the potential to treat a range of human diseases that currently have no effective cures. While any new treatment is likely to take years to reach the clinic, this study clearly demonstrates that investment in UK stem cell research and regenerative medicine is beginning to bear fruit, and that is very exciting.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Thursday, August 20, 2015
3D-Printed Guides Can Help Restore Function In Damaged Nerves
Scientists at the University of Sheffield have succeeded in using a 3D printed guide to help nerves damaged in traumatic incidents repair themselves.
Monday, March 02, 2015
Human Stem Cells Cure Common Form of Deafness
Experts from University developed a method to turn human embryonic stem cells into ear cells.
Tuesday, September 25, 2012
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos