Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Develop Stem Cell Model for Hereditary Disease

Published: Wednesday, October 17, 2012
Last Updated: Wednesday, October 17, 2012
Bookmark and Share
Discovery could allow faster testing of drugs for Gaucher disease and neurodegenerative conditions such as Parkinson’s.

A new method of using adult stem cells as a model for the hereditary condition Gaucher disease could help accelerate the discovery of new, more effective therapies for this and other conditions such as Parkinson’s, according to new research from the University of Maryland School of Medicine.
 
Scientists at the University of Maryland School of Medicine reprogrammed stem cells to develop into cells that are genetically similar to and react to drugs in a similar way as cells from patients with Gaucher disease. The stem cells will allow the scientists to test potential new therapies in a dish, accelerating the process toward drug discovery, according to the paper published online in the journal the Proceedings of the National Academy of Sciences (PNAS) on Oct. 15 (Panicker et.al.).
 
The study was funded with $1.7 million in grants from the Maryland Stem Cell Research Fund; researchers received a start-up grant for $200,000 in 2007 and a larger, five-year grant for $1.5 million in 2009.
 
“We have created a model for all three types of Gaucher disease, and used stem cell-based tests to evaluate the effectiveness of therapies,” says senior author Ricardo Feldman, Ph.D., associate professor of microbiology and immunology at the University of Maryland School of Medicine, and a research scientist at the University of Maryland Center for Stem Cell Biology and Regenerative Medicine. “We are confident that this will allow us to test more drugs faster, more accurately and more safely, bringing us closer to new treatments for patients suffering from Gaucher disease. Our findings have potential to help patients with other neurodegenerative diseases as well. For example, about 10 percent of Parkinson’s disease patients carry mutations in the recessive gene for Gaucher disease, making our research possibly significant for Parkinson’s disease as well.”
 
Gaucher disease is the most frequent lipid-storage disease. It affects 1 in 50,000 people in the general population. It is most common in Ashkenazi Jews, affecting 1 in 1,000 among that specific population. The disease occurs in three subtypes — Type 1 is the mildest and most common form of the disease, causing symptoms such as enlarged livers and spleens, anemia and bone disease. Type 2 causes very serious brain abnormalities and is usually fatal before the age of two, while Type 3 affects children and adolescents.

The condition is a recessive genetic disorder, meaning that both parents must be carriers for a child to suffer from Gaucher. However, said Dr. Feldman, studies have found that people with only one copy of a mutated Gaucher gene — those known as carriers — are at an increased risk of developing Parkinson’s disease.

“This science is a reflection of the mission of the University of Maryland School of Medicine — to take new treatments from bench to bedside, from the laboratory to patients, as quickly as possible,” says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs at the University of Maryland and John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine. “We are excited to see where this research goes next, bringing new hope to Gaucher patients and their families.”

Dr. Feldman and his colleagues used the new reprogramming technology developed by Shinja Yamanaka in Japan, who was recognized with this year’s Nobel Prize for Medicine or Physiology. Scientists engineered cells taken from the skin of Gaucher patients, creating human induced pluripotent stem cells, known as hiPSC — stem cells that are theoretically capable of forming any type of cell in the body. Scientists differentiated the cells to form white blood cells known as macrophages and neuronal cells.

A key function of macrophages in the body is to ingest and eliminate damaged or aged red blood cells. In Gaucher disease, the macrophages are unable to do so — they can’t digest a lipid present in the red blood cell membrane. The macrophages become engorged with lipid and cannot completely clear the ingested red blood cells. This results in blockage of membrane transport pathways in the macrophages lodged in the bone marrow, spleen and liver. The macrophages that the scientists created from the reprogrammed stem cells exhibited this characteristic hallmark of the macrophages taken from Gaucher patients.
 
To further test the stem cells, the scientists administered a recombinant enzyme that is effective in treating Gaucher patients with Type 1 disease. When the cells were treated with the enzyme, the function of the macrophages was restored — they completely cleared the red blood cells.

“The creation of these stem cell lines is a lovely piece of stem cell research,” said Curt Civin, M.D., professor of pediatrics and physiology, associate dean for research and founding director of the Center for Stem Cell Biology & Regenerative Medicine at the University of Maryland School of Medicine. “Dr. Feldman is already using these Gaucher patient-derived macrophages to better understand the disease fundamentals and to find novel medicines for Gaucher disease treatment. A major goal of our Center for Stem Cell Biology & Regenerative Medicine is to translate our fundamental discoveries into innovative and practical clinical applications that will enhance the understanding, diagnosis, treatment, and prevention of many human diseases. Clinical applications include not only transplantation of stem cells, but also the use of stem cells for drug discovery as Dr. Feldman’s studies so beautifully illustrate.”

“We are looking forward to testing new drugs on these cells, getting new therapies to patients,” says Dr. Feldman.

The research was a collaboration between scientists at the University of Maryland School of Medicine, Johns Hopkins University School of Medicine and the National Institutes of Health.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Tuesday, July 28, 2015
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Wednesday, July 22, 2015
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!