Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

OGI Investment will Fund Proteomic and Transcriptomic Analyses to Further Understand Stem Cells

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
The investment will be used to conduct studies required to apply for approval to initiate human clinical trials.

The Ontario Genomics Institute (OGI), through its Pre-Commercialization Business Development Fund (PBDF), has invested in Toronto-based Tissue Regeneration Therapeutics (TRT), a company that aims to use umbilical mesenchymal stem cells (MSCs) to treat a variety of serious medical conditions. 

MSCs are cells that can differentiate into musculoco-skeletal tissues such as bone, cartilage and muscle. Their ability to generate replacement tissues and affect cellular processes such as inflammation makes them an exciting potential therapy for a variety of conditions. Unlike other cells, MSCs can be used without the need for tissue matching and can be accumulated in large numbers. TRT has developed new methods to extract MSCs from umbilical cords, eliminating many of the challenges related to MSC harvesting from other tissue sources. 

“Stem cell research is a promising area of biomedical research and it could have significant impact for people suffering from many conditions,” said Mark Poznansky, President and CEO, OGI. “TRT is an excellent example of an Ontario company developing innovative therapies and translating research into potential clinical applications.”

TRT is aiming to launch clinical trials to test these cells within the next two years.  The PBDF funding from OGI will fund proteomic and transcriptomic analyses to further understand TRT’s stem cells. These studies will provide valuable information needed for regulatory approval to conduct human clinical trials and further differentiate their product from those of competitors.

“We believe that these stem cells represent a unique and potent means of treating multiple debilitating diseases,” said John Davies, CEO of TRT. “The OGI funding will enable us to demonstrate the utility of our cells for clinical applications using cutting edge technologies.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!