Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Olympus’ SCALEVIEW Microscope Objective Lenses Earn Three Prestigious Awards in Just a Few Months

Published: Wednesday, December 12, 2012
Last Updated: Wednesday, December 12, 2012
Bookmark and Share
Game-changing multiphoton optics for deeper tissue imaging.

The new line of Olympus SCALEVIEW multiphoton microscope objectives, which allow researchers to see far deeper into tissue than was ever possible before, has earned three prestigious life science product awards. The 25x Olympus 4mm (NA 1.0) and 8mm (NA 0.9) SCALEVIEW microscope objectives allow researchers to create highly accurate 3D structural representations of tissue from intact specimens by offering detailed, crisp images over super-long working distances. The prizes include the prestigious 2012 R&D 100 Award and the Gold Edison Award in the Science/Medical category. The SCALEVIEW lenses were also judged to be among 2012’s ten best microscopy innovations according to this year’s Microscopy Today Innovation Award competition.

The new SCALEVIEW multiphoton objectives provided by Olympus are significant because they facilitate breakthrough research on the functioning of the brain and other vital organs. Previously, researchers using light microscopes needed to slice thin sections of brain tissue to make observations through any significant depth. Every cut damaged tissue and potentially deformed the sample, and the tissue itself was so opaque that it made it difficult to visualize the millions of neural filament connections in any detail.

Using a combination of the cutting edge FluoView FV1000MPE multiphoton microscope system, SCALEVIEW optics and a breakthrough reagent developed by Dr. Atsushi Miyawaki of Japan’s RIKEN Brain Science Institute, which literally turns tissue transparent (Hiroshi Hama et al., Nature Neuroscience 14, 1481-1488 (2011)), researchers can see up to 8mm deep without slicing the tissue. Image quality, sharpness and brightness are maximised as the lenses have an ultra-long working distance optimised specifically for deep imaging. Image focal accuracy is enhanced thanks to the chromatic aberration correction of the lenses, which covers the complete tuning range of the multiphoton Ti:Sapphire laser, while the spherical aberration correction collar ensures that image degradation can be minimised when adjusting for differences in cover-glass thickness, temperature and specimen variation. In this way, the SCALEVIEW system helps biologists generate data that more accurately reflects the true internal structure of complex specimens without the need for interpolation, giving more confidence in the biological relevance of findings.

The R&D 100 Awards (selected by an independent judging panel and the editors of R&D Magazine) have long been a benchmark of excellence for industry sectors as diverse as telecommunications, high-energy physics, software, manufacturing, and biotechnology. The prestigious Gold Edison Award (internationally known as the Edison Awards™), have been honouring the best in innovation and excellence in the development of new products and services for the last 25 years.

In addition, the Microscopy Today Innovation Awards, which were established to honour innovative microscopy-related products and methods, select ten equally ranked winners each year on the basis of their importance and usefulness to the microscopy community. This is particularly focussed on their ability to help facilitate better, faster, or entirely new methods of analysis. With the power to open up brand new research applications across the life sciences, the SCALEVIEW objective lenses certainly meet these criteria, and provide users with the power to generate truly insightful biological data.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Newfound Strength in Regenerative Medicine
A promising new approach uses direct mechanical stimulation to repair severely damaged skeletal muscles.
Mapping out Cell Conversion
Researchers develop algorithm that takes the field of cell reprogramming forward.
Donor's Genotype Controls the Differentiation of IPS Cells
Pluripotent stem cells derived from different cell types are equally susceptible to reprogramming, indicates a recent study by the University of Helsinki and the National Institute for Health and Welfare, Finland. However, the genotype of the donor strongly influences the differentiation of the stem cell.
Signals That Make Early Stem Cells Identified
Researchers at The Rockefeller University have identified a new mechanism by which cells are instructed during development to become stem cells
Healing Scarred Hearts
Findings suggest stem cells may one day be used to regenerate damaged tissue after heart attack.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!