Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Stem Cell Approach for Blindness Successful in Mice

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
Researchers transplant developing cells into mice eyes and re-form the entire light-sensitive layer of the retina.

Blind mice can see again, after Oxford University researchers transplanted developing cells into their eyes and found they could re-form the entire light-sensitive layer of the retina.

Videos show the nocturnal mice, which once didn't notice the difference between light and dark at all, now run from the light and prefer to be in the dark - just like mice with normal vision.

The researchers say the approach has relevance for treating patients with retinitis pigmentosa, a condition in which the light-sensing cells in the retina gradually die leading to progressive blindness.

The study was led by Professor Robert MacLaren in the Nuffield Department of Clinical Neurosciences at the University of Oxford, together with Dr Mandeep Singh, an eye surgeon from the National University Hospital of Singapore who is currently undertaking PhD studies in Oxford. The findings are published online in the journal PNAS.

The researchers worked with mice that are blind due to complete loss of the light-sensing photoreceptor cells in their retinas. This is the most relevant mouse model for treating patients who are blind from retinitis pigmentosa.

After two weeks, the researchers showed the cells transplanted into the eye had re-formed a full light-detecting layer on the retina and the mice could see.

The cells used were mouse 'precursor' cells that are on an initial path towards developing into retinal cells.

A pupil constriction test showed that, of the 12 mice that received the cell transplant, 10 showed improved pupil constriction in response to light. This shows that the retinas of the mice were sensing the light once more, and this was being transmitted down the optic nerve to the brain.

Dr Singh says: 'We found that if enough cells are transplanted together, they not only become light sensing but they also regenerate the connections required for meaningful vision.'

Professor MacLaren explains: 'Stem cells have been trialled in patients to replace the pigmented lining of the retina, but this new research shows that the light-sensing layer might also be replaced in a similar way. The light-sensing cells have a highly complex structure and we observed that they can resume function as a layer and restore connections after transplantation into the completely blind retina.'

In looking forward towards potential cell treatments for blindness in humans, Professor MacLaren explains that they would like to use induced pluripotent stem cells, or iPS cells. These are stem cells that have been generated from the patient’s own cells, such as skin or blood cells, and can then be directed to form precursors of the retina cells.

Professor MacLaren says that this has been achieved by others: 'All the steps are there for doing this in patients in the future.' The next step is to find a reliable source of cells in patients that can provide the stem cells for use in such transplants, he says.

While these are more long-term developments to work towards, Professor MacLaren says 'Our study shows what we could achieve with a cell-based approach.'

'We have shown the transplanted cells survive, they become light-sensitive, and they connect and reform the wiring to the rest of the retina to restore vision,' he says. 'The ability to reconstruct the entire light sensitive layer of the retina using cell transplantation is the ultimate goal of the stem cell treatments for blindness we are all working towards.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Switch Controls How Stem Cells Turn Into New Heart Tissue
The scientists identified a protein called Fgf as the controlling factor which determines whether developing heart cells become heart muscle or blood vessels.
Tuesday, July 26, 2011
New Gene Discovered in Human Stem Cells may Benefit Transplant Patients
Oxford scientists have uncovered that the gene Nephroblastoma Overexpressed plays a key role in regulating the production of blood from stem cells.
Tuesday, May 01, 2007
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!