Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Shows Potential of Differentiated iPS Cells in Cell Therapy without Immune Rejection

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Boston University School of Medicine study shows that tissues derived from iPS cells in an experimental model were not rejected when transplanted back into genetically identical recipients.

The study, published online in Cell Stem Cell, demonstrates the potential of utilizing iPS cells to develop cell types that could offer treatment for a wide range of conditions, including diabetes, liver and lung diseases, without the barrier of immune rejection.

Ashleigh Boyd, DPhil, and Neil Rodrigues, DPhil, the study’s senior authors, are assistant professors of dermatology at BUSM and researchers at the Center for Regenerative Medicine (CReM) at Boston University and Boston Medical Center (BMC). They also are lead investigators at the National Institutes of Health’s Center of Biomedical Research Excellence (COBRE) at Roger Williams Medical Center, a clinical and research affiliate of BUSM.

iPS cells can be developed from adult cell types, such as skin or blood, by returning them to a stem cell state using genetic manipulation. iPS cells are capable of maturing (differentiating) into all the specific cell types in the body, making them a powerful tool for biological research and a source of tissues for transplantation based therapies. Given that iPS cells can be made in a patient-specific manner, there should be great potential for them to be transplanted back into the same patient without rejection. Yet a study published in Nature in 2011 demonstrated that iPS cells transplanted in the stem cell state were rejected in genetically identical recipients.

“The Nature study provocatively suggested that tissues derived from patient-specific iPS cells may be immunogenic after transplantation. However, it never directly assessed the immunogenicity of the therapeutically relevant cell types that could be utilized in regenerative medicine and transplantation,” said Rodrigues.

The BUSM researchers evaluated this matter by taking adult cells from an experimental model and deriving iPS cells from them. They then differentiated the iPS cells into three cell types: neuronal (nerve); hepatocytes (liver); and endothelial (blood vessel lining) cells. These three cell types represent each of the three germ layers present during embryonic development – mesoderm, ectoderm and endoderm. Cells from these layers differentiate and ultimately develop into the body’s tissue and organ systems. Using experiments to mirror the potential clinical use of patient-specific iPS cells in cell therapy, the team transplanted each of the differentiated cells into a genetically identical experimental model and found no signs of an elevated immune response or indications of rejection.

The study results suggest that using patient-specific iPS cells should overcome issues of immune rejection in transplantation, which will be a significant problem for potential embryonic stem cell-derived therapies. Immune rejection in transplantation is treated clinically by immunosuppressive drugs but they can have serious side-effects, including the risk of developing cancer.

“If the use of immunosuppressive drugs can be avoided, as may be the case for patient-specific iPS cell based therapies, it would be preferable. Our results are very promising and future work should be directed at assessing whether tissues derived from human iPS cells will similarly lack immunogenicity,” said Boyd.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos