Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Make Light Work of Fixing Broken Bones

Published: Wednesday, February 13, 2013
Last Updated: Wednesday, February 13, 2013
Bookmark and Share
Artificial bone, created using stem cells and a new lightweight plastic, could soon be used to heal shattered limbs.

The use of bone stem cells combined with a degradable rigid material that inserts into broken bones and encourages real bone to re-grow has been developed at the Universities of Edinburgh and Southampton.

Researchers have developed the material with a honeycomb scaffold structure that allows blood to flow through it, enabling stem cells from the patient's bone marrow to attach to the material and grow new bone. Over time, the plastic slowly degrades as the implant is replaced by newly grown bone.

Scientists developed the material by blending three types of plastics. They used a pioneering technique to blend and test hundreds of combinations of plastics, to identify a blend that was robust, lightweight, and able to support bone stem cells.

Successful results have been shown in the lab and in animal testing with the focus now moving towards human clinical evaluation. The study, published in the journal Advanced Functional Materials, was funded by the Biotechnology and Biological Sciences Research Council.

This new discovery is the result of a seven-year partnership between the University of Southampton and the University of Edinburgh.

Richard Oreffo, Professor of Musculoskeletal Science at the University of Southampton, comments: "Fractures and bone loss due to trauma or disease are a significant clinical and socioeconomic problem. This collaboration between chemistry and medicine has identified unique candidate materials that support human bone stem cell growth and allow bone formation. Our collaborative strategy offers significant therapeutic implications."

Professor Mark Bradley, of the University of Edinburgh's School of Chemistry, adds: "We were able to make and look at a hundreds of candidate materials and rapidly whittle these down to one which is strong enough to replace bone and is also a suitable surface upon which to grow new bone.

"We are confident that this material could soon be helping to improve the quality of life for patients with severe bone injuries, and will help maintain the health of an ageing population."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
Friday, July 08, 2016
Why Stem Cells Need to Stick with their Friends
Scientists have identified a core set of functionally relevant factors which regulates embryonic stem cells’ ability for self-renewal.
Tuesday, November 12, 2013
Edinburgh Scientists Identify Factor that Poises Stem Cells for Specialization
Researchers show that mouse embryonic stem cells need the protein FGF4 to become competent to be converted into specialized cell types.
Friday, August 03, 2007
"Land of the Ever-Young" Gene Reprogrammes Cells
A team of scientists at the Institute for Stem Cell Research investigated the switching of adult cell types into embryonic stem cells after cell fusion.
Monday, June 19, 2006
Scientific News
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
Rapid Generation from Stem Cells
Researchers coax human stem cells to rapidly generate bone and heart muscle by directing stem cells down complex developmental pathways.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!