Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cell Survival Strategy Is Key to Blood and Immune System Health

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Stem cells of the aging bone marrow recycle their own molecules to survive and keep replenishing the blood and immune systems as the body ages.

The recycling process, known as autophagy, or self-eating, involves reusing molecules and the chemical energy obtained from these molecules to withstand the killing effect of metabolic stress that intensifies as the body ages.

The discovery, reported online Feb. 6 in the journal Nature, showed that autophagy allows stem cells to avoid the alternative response to stress, which is programmed cellular suicide, in which cells that aren’t up to snuff kill themselves for the greater good.

While this trick of autophagy may help delay the onset of anemia, immune-system failure and other maladies that occur with age, as a survival strategy it is a bit of a compromise, said the senior author of the study, Emmanuelle Passegué, PhD, of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.

Autophagy might increase cancer risk, she said, by allowing old stem cells to survive despite having accumulated risky mutations over a lifetime.

“Almost all blood malignancies start in the stem cell niche,” said Passegué. Many of the deadliest and most prevalent blood cancers – for example, acute myelogenous leukemia – appear to arise from damaged stem cells and become increasingly common with age.

Trying to keep old stem cells of the blood and immune system functioning well without raising cancer risks is one of the next big challenges in biomedical research, she said.

“Our next step is to look within the stem cells to see what goes wrong as they begin to perform poorly with age.”

Autophagy is a Metabolic Stress Response

The overall finding of the study was that autophagy is triggered in blood, or hematopoietic, stem cells when a genetic switch called FOXO3A is turned on. The researchers showed that the process is not activated in the more mature, specialized cells of the blood or immune system.

“Our study indicates that autophagy is a mechanism of stress response that specifically protects stem cells,” said Passegué. “It’s a way of cleaning up within the cell that liberates amino acids and nutrients so that the stem cell can use that energy to survive being deprived of growth factors in the bone marrow niche where they reside.”

In their experiments, the researchers showed that metabolic stress in hematopoietic stem cells growing in a dish — in this case caused by lack of cytokines, which are involved in cell signaling, and growth factors, which stimulate growth processes in the cell — triggered FOX03A-driven autophagy. Only when these cells were prevented from activating autophagy did they commit suicide instead.

Similarly, in mice deprived of food for 24 hours, hematopoietic stem cells activated autophagy. Notably, mice that were genetically engineered to lack a key component of the autophagy biochemical machinery could not activate autophagy in response to food deprivation and lost hematopoietic stem cells as a result.

Scientists previously proposed that one factor in aging might be that hematopoietic stem cells become less able to undergo autophagy to save themselves. But when Passegué’s lab group compared hematopoietic stem cells from old and young mice, they found that autophagy was always active in old mice, but not in young — and perhaps less stressed — mice.

“We were very surprised,” Passegué said. “We expected that this mechanism would be falling apart in old stem cells.” In fact, the UCSF researchers show the opposite, that old stem cells absolutely rely on autophagy for survival and die when it is blocked.

The age-associated degradation of the bone marrow milieu probably restricts availability of nutrition and growth factors to old stem cells, according to Passegué. Such metabolic stress may cause stem cells to become damaged and to malfunction, she said.

UCSF study co-authors were postdoctoral fellows Matthew Warr, PhD, Ritu Malhotra, PhD, and Damien Reynaud, PhD; associate professor Jayanta Debnath, MD; technician Mikhail Binnewies; graduate student Johanna Flach, and intern Trit Garg. The National Institutes of Health, the California Institute for Regenerative Medicine and the Leukemia and Lymphoma Society Scholars program funded the research.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Tuesday, April 26, 2016
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Wednesday, February 03, 2016
Chromosome Therapy to Correct a Severe Chromosome Defect
Induced pluripotent stem cell reprogramming offers potential to correct abnormal chromosomes.
Tuesday, January 14, 2014
UCSF Receives $2 Million to Advance UC-Wide Biobanking Initiative
Goal of the project is to develop an ethical, efficient and sustainable system for obtaining, processing and sharing biospecimens and data.
Thursday, November 15, 2012
Gladstone Scientists Use Stem Cell Technology to Tackle Huntington’s Disease
International consortium uses patient cells to develop a human model of Huntington’s disease in a dish to improve and speed drug development.
Monday, July 02, 2012
Gladstone Scientists Reprogram Skin Cells into Brain Cells
Innovative technique lays groundwork for novel stem cell therapies.
Monday, June 11, 2012
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!