Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellectis Announced Collaboration Agreement with Stemgent

Published: Monday, March 11, 2013
Last Updated: Sunday, March 10, 2013
Bookmark and Share
Agreement to provide custom genome-engineered iPS cells.

Cellectis Bioresearch has announced a collaboration agreement with Stemgent, Inc. to provide research services that combines mRNA reprogramming technology and genome engineering.

The partnership marries Cellectis bioresearch’s leadership in genome engineering with Stemgent’s expertise in cellular reprogramming.

Stemgent’s proprietary mRNA reprogramming technology addresses the challenges around deriving non-viral non-integrating clinically-relevant induced pluripotent stem (iPS) cells for use in regenerative medicine drug discovery and basic research.

Traditional reprogramming methods can lead to the integration of unwanted genetic material into the host genome and therefore can be disruptive to the reprogrammed cell’s function.

Targeted genome engineering is a powerful technology that can be used to elucidate the genetic basis of diseases and to evaluate drug candidates through the generation of cell-based assays.

Cellectis bioresearch’s TALEN™-based genome engineering technology enables the directed introduction of disease-specific genetic mutations to mimic disease and of reporter genes with fluorescent/luminescent tags to evaluate drug candidate efficacy specificity and toxicity.

Together these two powerful technologies pave the way for clinically-relevant applications in regenerative medicine.

Cellectis Group CEO André Choulika said “The collaboration between Stemgent and Cellectis fits with our mission to enable scientists worldwide with the tools to generate genome-engineered iPS cells for use in their research and regenerative medicine.”

“Drug toxicity testing is an important part of early-stage drug development continued Ian Ratcliffe Stemgent President and CEO. “The challenge researchers face is that current models to test drugs are often inadequate. With this partnership and the combined technologies we can introduce mutations into reprogrammed cells and differentiate them into downstream lineages. Researchers can utilize these cells to test how mutations known and unknown alter the biology of the cells upon exposure to drugs.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Rapidly Generating Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!