Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Discovered in Deadly Parasitic Flatworms

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
The study was described in Nature on February 28, 2013.

The flatworms that cause the tropical disease schistosomiasis can live and reproduce inside infected humans for decades. In a new study, researchers identified the stem cells that may be responsible.

The discovery could lay the groundwork for new strategies to treat the devastating disease caused by the parasite.

Schistosomiasis, also known as bilharzia or snail fever, primarily affects people living in the tropical regions of developing countries.

Children who are repeatedly infected can develop anemia, malnutrition and learning difficulties. After years of infection, the parasite can damage the liver, intestine, lungs and bladder.

Rarely, it can also cause seizures, paralysis or spinal cord inflammation. More than 200 million people have this disease and more than 700 million people are at risk of infection.

Microscopic Schistosoma parasites infect people who are wading, swimming or bathing in freshwater inhabited by infected snails. The parasites, known as schistosomes, burrow into human skin and then grow inside blood vessels.

Female worms produce eggs that can travel to the intestine, liver, bladder or other organs. The eggs can be released back into the water through urine or feces, starting the cycle again.

Dr. Phillip Newmark and colleagues at the University of Illinois have spent years studying flatworms. They knew that planarians, non-parasitic worms popular in biology classrooms, have a type of stem cell known as a neoblast.

Neoblasts allow planarians to regenerate damaged organs and body parts. The scientists wondered whether schistosomes might have a similar type of stem cell.

Their study, described in Nature on February 28, 2013, was funded in part by NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and National Institute of Allergy and Infectious Diseases (NIAID).

The scientists used a labeling technique to identify a population of cells from schistosomes that was able to grow and divide. They found that these cells had a distinct structure and pattern of gene expression similar to neoblasts.

When the researchers used a fluorescent marker to tag the cells, they detected the marker in new cells 3 days later. This ability to divide and produce new cells is a key characteristic of stem cells.

The scientists injected schistosome-infected mice with a marker to look at the pattern of tagged cells at several time points. They located the tag in intestinal cells and in body wall muscle cells of the parasite after 7 days. This revealed that the cells could turn into different types of cells (differentiate), another key behavior of stem cells.

The team next turned their attention to signal pathways that might exist within these stem cells. Using their knowledge of planarians, they focused on the fibroblast growth factor (FGF) receptor family, which is expressed in proliferating planarian cells.

They identified a gene, SmfgfrA, in the adult stem cells that codes for the parasite’s version of a FGF receptor. Using a technique called RNA interference (RNAi), they turned off the gene and found that it’s required for maintenance of the stem cells in the worm.

“We started with the big question: How does a parasite survive in a host for decades?” says Newmark. “That implies that it has ways of repairing and maintaining its tissues. This study gives us insight into the really interesting biology of these parasites, and it may also open up new doors for making their life cycle a lot shorter.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Early Treatment Benefits Infants with Severe Combined Immunodeficiency
NIH-funded study identifies factors contributing to successful stem cell transplants.
Friday, August 01, 2014
Stem Cells Form Light-Sensitive 3-D Retinal Tissue
Researchers induced human stem cells to create a 3-D retina structure that responds to light. The finding may aid the study of eye diseases and could eventually lead to new therapies.
Tuesday, June 24, 2014
Stem Cell Therapy Rebuilds Heart Muscle in Primates
Human embryonic stem cells used to regenerate damaged primate hearts.
Tuesday, May 13, 2014
Too Much Protein May Kill Brain Cells As Parkinson’s Progresses
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.
Friday, April 11, 2014
NeuroBioBank Gives Researchers One-Stop Access to Post-Mortem Brains
The NIH is shifting from a limited funding role to coordinating a Web-based resource for sharing post-mortem brain tissue, a move which is expected to expedite research on brain disorders.
Tuesday, December 03, 2013
Gene-Silencing Study Finds New Targets for Parkinson’s Disease
NIH study sheds light on treatment of related disorders.
Monday, November 25, 2013
Epigenetic Clock Marks Age of Human Tissues and Cells
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.
Tuesday, November 05, 2013
NIH Scientists Pursue New Therapies to Improve Rare Disease Drug Development
Projects selected for potential to treat specific rare diseases.
Friday, September 13, 2013
New Type of Pluripotent Cell Discovered In Adult Breast Tissue
Human body carries personalized “patch kit," Say UCSF scientists.
Tuesday, March 05, 2013
NIH Study Suggests Gene Variation May Shape Bladder Cancer Treatment
Study appeared in the Journal of the National Cancer Institute.
Thursday, January 03, 2013
Scientific News
Crucial for Stem Cell Survival Protein Identified Using Editing Tool CRISPR
A team of University of Wisconsin-Madison engineers has identified a protein that is integral to the survival and self-renewal processes of human pluripotent stem cells (hPSC).
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!