Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fibrocell/UCLA Study on Human Skin Cells Yields Promising Results

Published: Thursday, March 21, 2013
Last Updated: Thursday, March 21, 2013
Bookmark and Share
Research has resulted in a discovery that may lead to a more predictable, commercially viable method of producing stable, induced pluripotent stem (iPS) cells from adult skin cells.

The study has been accepted for publication in the Stem Cell Research and Therapy peer-reviewed journal and the provisional paper is available online. It was conducted under the guidance of James Byrne, PhD, assistant professor, UCLA Department of Molecular and Medical Pharmacology, at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

“We continue to be pleased with the results of our collaboration with UCLA to pursue the full potential of fibroblasts,” said David Pernock, CEO and Board Chair, Fibrocell Science.

The cells may be used by academic researchers and pharmaceutical companies to evaluate new drug compounds for safety and to develop patient-specific therapies for multiple disease states, including heart disease, Parkinson’s disease and diabetes. Using skin cells is more advantageous to the patient than obtaining cells from bone marrow or adipose tissue (fat). A skin biopsy is quicker to perform, less painful and minimally invasive.

Dr. Byrne’s study found human skin cells cultured in the presence of a chemical known as BAY11 resulted in reproducible increased expression of the OCT4 gene that did not inhibit normal cell growth. OCT4 is involved in many cell processes, but is primarily known to maintain pluripotency and regulate cell differentiation. It is typically used as a marker to identify undifferentiated cells.

The development of a more stable method to create iPS cells from skin cells allows for the potential of a reproducible commercial manufacturing process. The study was performed at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Department of Molecular and Medical Pharmacology at UCLA in conjunction with the Department of Cell Biology and Neuroscience at Rutgers University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fibrocell, Intrexon Announce Collaboration
Companies to develop best-in-class treatment for arthritis and related conditions through targeted, long-term therapeutic delivery while sparing systemic effects.
Tuesday, January 05, 2016
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skin Cells Turned into Heart Cells and Brain Cells Using Drugs
In a scientific first, Gladstone researchers have used chemical drugs to convert skin cells into heart cells and brain cells, without adding any external genes.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Micro Heart Muscle Created from Stem Cells
Researchers have designed a new way to create micro heart muscle from stem cells using a unique dog bone dish.
Immune Booster Tested in Advanced Merkel Cell Cancer
The immunotherapy drug produced durable responses in many patients.
Mutated Mitochondria Found in Stem Cells
Researchers find hidden genetic mutations in patient-derived stem cells which could ultimately undermine therapeutic benefit.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!