Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

ViaCord® Collaborates with the Center for International Blood and Marrow Transplant Research®

Published: Wednesday, May 01, 2013
Last Updated: Wednesday, May 01, 2013
Bookmark and Share
PerkinElmer’s family cord blood banking business and international research organization collaborates to analyze quality and outcomes of cord blood stem cell units.

ViaCord, PerkinElmer’s family cord blood and tissue preservation business, is collaborating with the Center for International Blood and Marrow Transplant Research (CIBMTR) to collect, maintain and publish research from ViaCord’s cord blood stem cell transplants. This collaboration will expand knowledge of cord blood-derived stem cell applications throughout the medical and research community. To date, CIBMTR’s large network of transplant centers has resulted in the development of a clinical database of more than 30,000 cord blood transplant recipients for clinical decision-making, use in studies, and other research purposes with the goal of making a profound impact on the survival of cord blood transplant patients around the world. CIBMTR will work directly with ViaCord to collect and analyze data to better understand the quality and any outcome metrics of ViaCord’s released cord blood stem cell units as well as how the units are being used.

“Collaborating with CIBMTR, which has established the industry standard for collecting data around hematopoietic cellular therapy and regenerative medicine, allows us to simultaneously gain insights into the effectiveness of the cord blood stem cell units we have released for use as well as outcomes from their clinical application,” said Morey Kraus, Chief Scientific Officer, ViaCord. “We are then able to incorporate data from our transplanted units into the larger database, which may be accessed for other CIBMTR studies by the medical and scientific community to further their research and understanding of cord blood stem cells.”

ViaCord is working with CIBMTR to collect and publish data as well as identify outcomes unique to related or autologous (stem cells from the same patient) transplants. The collaboration will also enable the analysis of umbilical cord units released for potential future use in autologous cell therapy and regenerative medicine clinical trials, including Cerebral Palsy, Type 1 Diabetes and others.

“The science of cord blood and cord tissue stem cells is growing at a rapid pace,” said J. Douglas Rizzo, M.D., M.S., Associate Scientific Director, CIBMTR. “We are excited to collaborate with ViaCord to provide data and analytic expertise that will assist the development of the field through research.”

ViaCord's family cord blood banking services currently offers expectant families the opportunity to preserve their baby's umbilical cord blood for potential medical use by the child or a related family member. Families are also preserving their baby’s umbilical cord tissue because research suggests that one day these special cells may have the potential to treat medical conditions that are untreatable today. ViaCord has preserved the umbilical cord blood of more than 300,000 newborns. Twenty years ago, cord blood stem cells were used to treat just one disease, Fanconi's anemia. Today, cord blood stem cells have been used in the treatment of nearly 80 diseases, including cancers, certain blood disorders and immunodeficiencies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

PerkinElmer Announces Collaboration with Rutgers University Cell and DNA Repository
Rutgers University Cell and DNA Repository has adopted PerkinElmer’s technologies for automation of Next Generation Sequencing sample preparation.
Thursday, February 16, 2012
Scientific News
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!