Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

RTG and JCVI Embark on Strategic Research Initiative

Published: Friday, May 03, 2013
Last Updated: Friday, May 03, 2013
Bookmark and Share
Long-term collaboration to understand de novo mutations for stem cell progression study and deliver validated, gold-standard datasets.

Real Time Genomics, Inc. (RTG) has announced a long-term strategic collaboration with the J. Craig Venter Institute (JCVI), aimed at understanding and analyzing the genetic changes that induced pluripotent stem cells may acquire during the process of differentiation.

RTG and JCVI have also announced a collaboration to discover and validate highly accurate human variant information using the Venter human reference diploid genome and associated orthogonal information.

The teams will deposit this information into the public databases for use by the life sciences community. The two organizations hope to define best practices and to create standardized reference datasets for the genome sequencing community.

“There is considerable interest in understanding the nature of de novo mutations that are acquired during reprogramming and differentiation of iPSCs. These mutations might affect how iPSCs behave as disease models and could limit the therapeutic use of these cells, but there are many pitfalls in analyzing sequence data to locate and interpret these rare mutations,” said Mark Adams, Scientific Director for the J. Craig Venter Institute.

Adams continued, “Since sequencing and publishing the Venter reference human genome in 2007, we have built a significant dataset around this genome and want to help others leverage the information to improve their own research. RTG is an ideal partner for these projects because of their ability to rapidly analyze data from multiple sequencing platforms with improved accuracy of the resulting variant catalog. We are excited to be working with them on these two important collaborations.”

As part of the collaboration, JCVI will be using the RTG platform and working directly with RTG scientists to identify SNPs, indels, structural variants and de novo mutations in data from both projects.

The RTG platform will be seamlessly integrated into JCVI’s existing pipeline infrastructure.

“The stem cell collaboration with JCVI is an exciting opportunity to move our technology into new areas as cell lineage progression studies are becoming important in a wide range of NGS applications,” said Francisco De La Vega, VP of Genome Sciences at Real Time Genomics.

Vega continued, "At the same time, a problem in clinical applications of sequencing is the difficulty knowing whether sequencing data and results meet a specific accuracy criteria. RTG and the broader community are working to collectively settle on a set of validated datasets to improve research. Because JCVI has considerable orthogonal information related to the Venter reference genome, including Sanger long-read sequence data, data from multiple next-generation sequencing platforms, and even RNAseq data and full phasing information, there is an opportunity to contribute a standard back to the community to improve the sensitivity and specificity of human disease applications using NGS.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!