Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

IBN Creates Unlimited Source of Human Kidney Cells

Published: Monday, June 03, 2013
Last Updated: Monday, June 03, 2013
Bookmark and Share
Applications include in vitro toxicology, disease models & regenerative medicine.

Researchers at the Institute of Bioengineering and Nanotechnology (IBN) have successfully generated human kidney cells from human embryonic stem cells in vitro.

Specifically, they produced the renal cells under artificial conditions in the lab without using animals or organs. This has not been possible until now.

According to IBN Executive Director, Professor Jackie Y. Ying, "This discovery has wide-reaching implications for in vitro toxicology, drug screening, disease models and regenerative medicine. In particular, we are interested in applying our technology to develop predictive in vitro drug testing and renal toxicity models as alternatives to animal testing."

IBN Team Leader and Principal Research Scientist Dr Daniele Zink elaborated, "The kidney is a major target organ for drug-induced toxic effects. Therefore, it is important for pharmaceutical companies to find out early in the development phase whether their drugs would cause nephrotoxicity in humans. However, animal models are of limited predictability, and there is currently no regulatory accepted in vitro assay based on renal cells to predict nephrotoxic effects. A major problem is the lack of suitable renal cells, which may now be resolved through our discovery."

At present, human kidney cells are extracted directly from human kidney samples. However, this method is not efficient because such samples are limited, and the extracted cells die after a few cell divisions in the petri dish.

Also, cells obtained from different samples would display variable features, depending on age, gender, health status and other conditions of the donor.

Therefore, cells that have been isolated from human samples are of limited suitability for research and applications in industry and translational medicine, which require large cell numbers.

An alternative approach is to use human renal cell lines that have been rendered immortal, i.e. they can be reproduced indefinitely in the lab.

However, such cells may not be used in many applications due to safety issues, and their functional features have usually been changed so profoundly that they may no longer be useful toward predicting cell behavior in the human body.

IBN's technique, on the other hand, enables human embryonic stem cells to differentiate into renal proximal tubular-like cells. This particular kidney cell type plays an important role in kidney disease-related processes and drug clearance.

Results showed that the renal proximal tubular-like cells generated by IBN were similar to the renal proximal tubular cells isolated from fresh human kidney samples. For example, they displayed very similar gene and protein expression patterns.

Also, since human embryonic stem cells may grow indefinitely in cell culture, the IBN researchers have discovered a potentially unlimited source of human kidney cells.

"We are currently adapting our approach to use induced pluripotent stem cells as the source," shared Dr Karthikeyan Narayanan, IBN Senior Research Scientist. "We are also planning to modify our protocol in order to generate other renal cell types from stem cells."

The IBN researchers have tested the renal cells they generated in in vitro nephrotoxicology models developed by the Institute, and have obtained very promising test results. They welcome industry partners to collaborate with IBN on commercializing this technology.

IBN has recently received a grant from A*STAR's Joint Council Office Development Program to further develop predictive in vitro models for liver- and kidney-specific toxicity.

This project will be conducted in collaboration with the Experimental Therapeutics Centre, the Bioinformatics Institute and the National University Health System.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos