Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Demonstrate Use of Stem Cells to Analyze Diabetes Causes and Treatment

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
Scientists are using patient-specific stem cells to correct deficient insulin-producing cells.

A team from the New York Stem Cell Foundation (NYSCF) Research Institute and the Naomi Berrie Diabetes Center of Columbia University has generated patient-specific beta cells, or insulin-producing cells, that accurately reflect the features of maturity-onset diabetes of the young (MODY).

The researchers used skin cells of MODY patients to produce induced pluripotent stem (iPS) cells, from which they then made beta cells. Transplanted into a mouse, the stem cell-derived beta cells secreted insulin in a manner similar to that of the beta cells of MODY patients. Repair of the gene mutation restored insulin secretion to levels seen in cells obtained from healthy subjects. The findings were reported today in the Journal of Clinical Investigation.

Previous studies have demonstrated the ability of human embryonic stem cells and iPS cells to become beta cells that secrete insulin in response to glucose or other molecules. But the question remained as to whether stem cell-derived beta cells could accurately model genetic forms of diabetes and be used to develop and test potential therapies.

“We focused on MODY, a form of diabetes that affects approximately one in 10,000 people. While patients and other models have yielded important clinical insights into this disease, we were particularly interested in its molecular aspects—how specific genes can affect responses to glucose by the beta cell,” said co-senior author Dieter Egli, PhD, Senior Research Fellow at NYSCF, who was named a NYSCF–Robertson Stem Cell Investigator in 2012.

MODY is a genetically inherited form of diabetes. The most common form of MODY, type 2, results in a loss-of-function mutation in one copy of the gene that codes for the sugar-processing enzyme glucokinase (GCK). With type 2 MODY, higher glucose levels are required for GCK to metabolize glucose, leading to chronic, mildly elevated blood sugar levels and increased risk of vascular complications.

MODY patients are frequently misdiagnosed with type 1 or 2 diabetes. Proper diagnosis can not only change the patient’s course of treatment but affect family members, who were previously unaware that they, too, might have this genetic disorder.

NYSCF scientists took skin cells from two Berrie Center type 2 MODY patients and “reprogrammed”—or reverted—them to an embryonic-like state to become iPS cells. To examine the effect of the GCK genetic mutation, they also created two genetically manipulated iPS cell lines for comparison: one fully functional (two correct copies of the GCK gene) and one with complete loss of function (two faulty copies of the GCK gene). They then generated beta cell precursors from the fully functional and loss-of-function iPS cell lines and transplanted the cells for further maturation into immune-compromised mice.

“Our ability to create insulin-producing cells from skin cells, and then to manipulate the GCK gene in these cells using recently developed molecular methods, made it possible to definitively test several critical aspects of the utility of stem cells for the study of human disease,” said Haiqing Hua, PhD, lead author on the paper, a postdoctoral fellow in the Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center at Columbia University and the New York Stem Cell Foundation Research Institute.

When given a glucose tolerance test three months later, mice with MODY beta cells had decreased sensitivity to glucose but a normal response to other molecules that stimulate insulin secretion. This is the hallmark of MODY. Mice with two faulty copies of the GCK gene secreted no additional insulin in response to glucose. When the researchers repaired the GCK mutation using molecular techniques, cells with two restored copies of GCK responded normally to the glucose stress test. Unlike other reported techniques, the researchers’ approach efficiently repaired the GCK mutation without introducing any potentially harmful additional DNA.

“Generation of patient-derived beta cells with gene correction could ultimately prove to be a useful cell-replacement therapy by restoring patients’ ability to regulate their own glucose. This result is truly exciting,” said Susan L. Solomon, Chief Executive Officer of The New York Stem Cell Foundation.

The researchers also used an electron microscope to assess beta cells for insulin content by counting granules—packages that store insulin for release. Even though all beta cell types had a similar number of granules, complete loss of function of the GCK gene was associated with decreased beta-cell production.

“These studies provide a critical proof-of-principle that genetic characteristics of patient-specific insulin-producing cells can be recapitulated through use of stem cell techniques and advanced molecular biological manipulations. This opens up strategies for the development of new approaches to the understanding, treatment, and, ultimately, prevention of more common types of diabetes,” said co-senior author Rudolph Leibel, MD, Christopher Murphy Memorial Professor of Diabetes Research, Columbia University Medical Center, and Director, Division of Molecular Genetics, and Co-Director of the Naomi Berrie Diabetes Center.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Neurons Controlling Appetite Made from Skin Cells
Cells provide individualized model for studying obesity and testing treatments.
Monday, March 02, 2015
Bone Stem Cells Shown To Regenerate Bone And Cartilage In Adult Mice
Cells could be exploited to treat osteoarthritis and osteoporosis.
Monday, January 19, 2015
Human Stem Cells Converted to Functional Lung Cells
Possibility of generating lung tissue for transplant using a patient’s own cells.
Thursday, December 05, 2013
Human Stem Cells Elucidate Mechanisms of Beta-Cell Failure in Diabetes
Mechanisms that impair insulin production in diabetes identified using a human stem cell model of Wolfram syndrome, a rare form of diabetes.
Thursday, November 14, 2013
Researchers Discover Cells that Restore Bladder’s Unique Lining
Finding that could lead to new ways to treat chronic bladder pain or to produce new tissue for patients with damaged bladders.
Tuesday, September 24, 2013
“Housekeeping” Mechanism for Brain Stem Cells Discovered
Researchers at Columbia University Medical Center (CUMC) have identified a molecular pathway that controls the retention and release of the brain’s stem cells.
Wednesday, April 25, 2012
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos