Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Track Cardiac Regeneration on Cellular Level

Published: Thursday, June 20, 2013
Last Updated: Thursday, June 20, 2013
Bookmark and Share
New study visually monitored the dynamic cellular events that take place when cardiac regeneration occurs in zebrafish after cardiac ventricular injury.

Their findings provide evidence that various cell lines in the heart are more plastic, or capable of transformation into new cell types, than previously thought.

More importantly, the research reveals a novel potential source of cells for regenerating damaged heart muscle, according to principal investigator Neil Chi, MD, PhD, assistant professor of medicine in the Division of Cardiology and member of the Institute of Genomic Medicine at UC San Diego.

Heart failure remains the leading cause of death in the developed world, largely due to the inability of mammalian hearts to regenerate new cells and repair themselves. However, lower vertebrates such as zebrafish are capable of generating new ventricular heart muscle cells, or cardiomyocytes, that can replace the heart muscle lost through ischemia-induced infarcts — more commonly known in humans as heart attacks.

In this study, the scientists generated a genetic ablation system in zebrafish capable of targeted destruction of heart muscle, and then tracked both atrial and ventricular cardiomyocytes during injury using fluorescent proteins.

Using a genetic fate mapping technique — a method of comparing cells at various points of development in order to understand their cellular embryonic origin — the scientists revealed that cardiomyocytes in the heart's atrium can turn into ventricular cardiomyocyctes in a process called transdifferentiation. This transdifferentiation allows the atrial cells to regenerate and repair the ventricle, which is the chamber primarily affected in heart attacks.

First author Ruilin Zhang noted that such transdifferentiation was blocked when Notch signaling was inhibited, and subsequent studies will look at the Notch signaling pathway to understand the underlying mechanism at work.

"This is among the first studies to look at these specific cardiac lineages in detail to see how zebrafish are able to regenerate heart cells," said Chi, adding that their findings open a door to revealing how such regeneration might someday work to change the fate of human hearts.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Understanding a Protein’s Role in Familial Alzheimer’s
Researchers have used genetic engineering of human iPSC’s to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD).
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
$100M gift launches Sanford Stem Cell Clinical Center
T. Denny Sanford has committed $100 million to the creation of the Sanford Stem Cell Clinical Center at the University of California, San Diego.
Wednesday, November 06, 2013
Grafted Limb Cells Acquire Molecular ‘Fingerprint’ of New Location
Findings further creation of regenerative therapies for humans.
Wednesday, October 30, 2013
From Mature Cells to Embryonic-Like Stem Cells
Bioengineers have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage.
Tuesday, October 22, 2013
Researchers Develop Stem Cell Therapies for Acute Lung Injury
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent.
Monday, October 21, 2013
Scientific News
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Challenging Stem Cell Fate Control
Researchers have found that the fate of stem cells is not only controlled by their local niche, but also by a cell-intrinsic mechanism.
Zika Proteins Responsible for Microcephaly Identified
Researchers have undertaken the first study to examine Zika infection in human neural stem cells from second-trimester fetuses.
Heart Muscle from Stem Cells Aid Cardiovascular Medicine
Researchers discover heart muscle cells from stem cells mirror expression patterns of key genes in donor tissue.
Examining New Hypotheses for Undiagnosed Patients
UnDx Consortium gathers in San Diego to create new paths to identifying currently undiagnosed illnesses.
Novel Therapeutic Approach for Blood Disorders
Gene editing of human blood-forming stem cells mimics a benign genetic condition that helps to overcome sickle cell disease and other blood disorders.
Bone Marrow Transplants Without Using Chemotherapy
Scientists have devised a way to destroy blood stem cells in mice without using chemotherapy or radiotherapy, both of which have toxic side effects.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!