Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Find Key to Blood-Clotting Process

Published: Wednesday, June 26, 2013
Last Updated: Wednesday, June 26, 2013
Bookmark and Share
Researchers have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.

The research, carried out in collaboration with researchers from the Universities of Homburg and Heidelberg in Germany, the National Institutes of Health in the USA and University College London, focuses on the action of platelets in the blood clotting process.

These platelets are very small cells in our blood that are essential to blood clotting when we damage a blood vessel. Unfortunately, platelet clots can also block blood vessels in the heart, leading to heart attacks.

When blood vessels are damaged they expose the protein collagen and produce thrombin, which then trigger the platelets to create a clot or thrombus.  It has been known for some time that platelets are activated much more strongly if they detect both collagen and thrombin at the same time, but until now it has been a puzzle as how this happens.

Now the research from Bristol and others, which is published today [25 June] in the journal Science Signalling, has shown that platelets respond to simultaneous exposure to these two strong signals by opening a channel in their outer membrane, made up of the proteins TRPC3 and TRPC6.

This channel, which is not opened if platelets detect only one of the damage signals, allows calcium ions to penetrate the platelets and that triggers the platelets to expose a procoagulant surface, which means that they generate more thrombin. This can lead to a vicious cycle of more platelet activation, the generation of more thrombin and bigger clots.

Bristol’s contribution to this research project has been supported by the British Heart Foundation and it’s hoped in the future it could help guide the development of new therapies to control dangerous blood clotting.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Human Trials of Manufactured Blood Within Two Years
The first human trials of lab-produced blood to help create better-matched blood for patients with complex blood conditions has been announced by NHS Blood and Transplant.
Monday, June 29, 2015
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos