Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Newly Identified Bone Marrow Stem Cells Reveal Markers for ALS

Published: Friday, July 12, 2013
Last Updated: Friday, July 12, 2013
Bookmark and Share
Genes could give new direction for diagnostics and therapeutics research, says a TAU researcher.

Amyotrophic Lateral Sclerosis (ALS) is a devastating motor neuron disease that rapidly atrophies the muscles, leading to complete paralysis. Despite its high profile — established when it afflicted the New York Yankees' Lou Gehrig — ALS remains a disease that scientists are unable to predict, prevent, or cure.

Although several genetic ALS mutations have been identified, they only apply to a small number of cases. The ongoing challenge is to identify the mechanisms behind the non-genetic form of the disease and draw useful comparisons with the genetic forms.

Now, using samples of stem cells derived from the bone marrow of non-genetic ALS patients, Prof. Miguel Weil of Tel Aviv University's Laboratory for Neurodegenerative Diseases and Personalized Medicine in the Department of Cell Research and Immunology and his team of researchers have uncovered four different biomarkers that characterize the non-genetic form of the disease. Each sample shows similar biological abnormalities to four specific genes, and further research could reveal additional commonalities. "Because these genes and their functions are already known, they give us a specific direction for research into non-genetic ALS diagnostics and therapeutics," Prof. Weil says. His initial findings were reported in the journal Disease Markers.

Giving in to stress

Although several genetic ALS mutations have been identified, they only apply to a small number of cases. The ongoing challenge is to identify the mechanisms behind the non-genetic form of the disease and draw useful comparisons with the genetic forms.

To hunt for these biomarkers, Prof. Weil and his colleagues turned to samples of bone marrow collected from ALS patients. Though more difficult to collect than blood, bone marrow’s stem cells are easy to isolate and grow in a consistent manner. In the lab, he used these cells as cellular models for the disease. He ultimately discovered that cells from different ALS patients shared the same abnormal characteristics of four different genes that may act as biomarkers of the disease. And because the characteristics appear in tissues that are related to ALS — including in muscle, brain, and spinal cord tissues in mouse models of genetic ALS — they may well be connected to the degenerative process of the disease in humans, he believes.

Searching for the biological significance of these abnormalities, Prof. Weil put the cells under stress, applying toxins to induce the cells' defense mechanisms. Healthy cells will try to fight off threats and often prove quite resilient, but ALS cells were found to be overwhelmingly sensitive to stress, with the vast majority choosing to die rather than fight. Because this is such an ingrained response, it can be used as a feature for drug screening for the disease, he adds.

The hunt for therapeutics

Whether these biomarkers are a cause or consequence of ALS is still unknown. However, this finding remains an important step towards uncovering the mechanisms of the disease. Because these genes have already been identified, it gives scientists a clear direction for future research. In addition, these biomarkers could lead to earlier and more accurate diagnostics.

Next, Prof. Weil plans to use his lab's high-throughput screening facility — which can test thousands of compounds' effects on diseased cells every day — to search for drug candidates with the potential to affect the abnormal expression of these genes or the stress response of ALS cells. A compound that has an impact on these indicators of ALS could be meaningful for treating the disease, he says.

Prof. Weil is the director of the new Cell Screening Facility for Personalized Medicine at TAU. The facility is dedicated to finding potential drugs for rare and Jewish hereditary diseases.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!