Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Salk Scientists Discover more Versatile Approach to Creating Stem Cells

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
New method should hasten promise of regenerative medicine.

Stem cells are key to the promise of regenerative medicine: the repair or replacement of injured tissues with custom grown substitutes. Essential to this process are induced pluripotent stem cells (iPSCs), which can be created from a patient's own tissues, thus eliminating the risk of immune rejection. However, Shinya Yamanaka's formula for iPSCs, for which he was awarded last year's Nobel Prize, uses a strict recipe that allows for limited variations in human cells, restricting their full potential for clinical application.

Now, in this week's issue of Cell Stem Cell, the Salk Institute's Juan Carlos Izpisua Belmonte and his colleagues show that the recipe for iPSCs is far more versatile than originally thought. For the first time, they have replaced a gene once thought impossible to substitute, creating the potential for more flexible recipes that should speed the adoption of stem cells therapies.

Stem cells come in two types: embryonic stem cells (ESCs), which are immature cells that have never differentiated into specific cell types, and induced pluripotent stem cells, which are mature cells that have been reprogrammed back into an undifferentiated state. After the initial discovery in 2006 by Yamanaka that introducing four different genes into a mature cell could suffice for reprogramming the cell to pluripotency, most researchers adopted his recipe.

Izpisua Belmonte and his colleagues took a fresh approach and discovered that pluripotency (the stem cell's ability to differentiate into nearly any kind of adult cell) can also be accomplished by balancing the genes required for differentiation. These genes code for "lineage transcription factors," proteins that start a stem cell down the path to differentiate first into a particular cell lineage, or type, such as a blood cell versus a skin cell, and then finally into a specific cell, such as a white blood cell.

"Prior to this series of experiments, most researchers in the field started from the premise that they were trying to impose an 'embryonic-like' state on mature cells," says Izpisua Belmonte, who holds the Institute's Roger Guillemin Chair. "Accordingly, major efforts had focused on the identification of factors that are typical of naturally occurring embryonic stem cells, which would allow or further enhance reprogramming."

Despite these efforts, there seemed to be no way to determine through genetic identity alone that cells were pluripotent. Instead, pluripotency was routinely evaluated by functional assays. In other words, if it acts like a stem cell, it must be a stem cell.

That condition led the team to their key insight. "Pluripotency does not seem to represent a discrete cellular entity but rather a functional state elicited by a balance between opposite differentiation forces," says Izpisua Belmonte.

Once they understood this, they realized the four extra genes weren't necessary for pluripotency. Instead, it could be achieved by altering the balance of "lineage specifiers," genes that were already in the cell that specified what type of adult tissue a cell might become.

"One of the implications of our findings is that stem cell identity is actually not fixed but rather an equilibrium that can be achieved by multiple different combinations of factors that are not necessarily typical of ESCs," says Ignacio Sancho-Martinez, one of the first authors of the paper and a postdoctoral researcher in Izpisua Belmonte's laboratory.

The group was able to show that more than seven additional genes can facilitate reprogramming to iPSCs. Most importantly, for the first time in human cells, they were able to replace a gene from the original recipe called Oct4, which had been replaced in mouse cells, but was still thought indispensable for the reprogramming of human cells. Their ability to replace it, as well as SOX2, another gene once thought essential that had never been replaced in combination with Oct4, demonstrated that stem cell development must be viewed in an entirely new way.

"It was generally assumed that development led to cell/tissue specification by 'opening' certain differentiation doors," says Emmanuel Nivet, a post-doctoral researcher in Izpisua Belmonte's laboratory and co-first author of the paper, along with Sancho-Martinez and Nuria Montserrat of the Center for Regenerative Medicine in Barcelona, Spain.

Instead, the successful substitution of both Oct4 and SOX2 shows the opposite. "Pluripotency is like a room with all doors open, in which differentiation is accomplished by 'closing' doors," Nivet says. "Inversely, reprogramming to pluripotency is accomplished by opening doors."

The team believes their work should help to overcome one of the major hurdles to the widespread adoption of stem cell therapies: the original four genes used to reprogram stem cells had been implicated in cancer. "Recent studies in cancer, many of them done by my Salk colleagues, have shown molecular similarities between the proliferation of stem cells and cancer cells, so it is not surprising that oncogenes [genes linked to cancer] would be part of the iPSC recipe," says Izpisua Belmonte.

With this new method, which allows for a customized recipe, the team hopes to push therapeutic research forward. "Since we have shown that it is possible to replace genes thought essential for reprogramming with several different genes that have not been previously involved in tumorigenesis, it is our hope that this study will enable iPSC research to more quickly translate into the clinic," says Izpisua Belmonte.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Stem Cell May Overcome Hurdles for Regenerative Medicine
Scientists have discovered a novel type of pluripotent stem cell capable of developing into any type of tissue whose identity is tied to their location in a developing embryo.
Monday, May 11, 2015
Vital Step in Stem Cell Growth Revealed
Salk scientists' finding could aid regenerative and cancer therapies.
Thursday, May 07, 2015
Salk Scientists Discover a Key to Mending Broken Hearts
Researchers regenerate and heal mouse hearts by using the molecular machinery the animals had all along.
Wednesday, November 12, 2014
Turning Human Skin Cells Into Immune-Fighting White Blood Cells
The fast and safe technique developed at the Salk Institute circumvents problems that have hindered regenerative medicine.
Friday, September 12, 2014
No Extra Mutations in Modified Stem Cells, Study Finds
New results ease previous concerns that gene-editing techniques-used to develop therapies for genetic diseases-could add unwanted mutations to stem cells.
Saturday, July 12, 2014
Salk Institute Receives $3M Gift for Ageing Research
The gift from the Glenn Foundation for Medical Research will allow the Institute to continue conducting research to understand the biology of normal human aging and age-related diseases.
Friday, May 23, 2014
New Stem Cell Research Points to Early Indicators of Schizophrenia
Salk scientists show fundamental differences in early neurons from patients with schizophrenia, supporting the theory that risk for the disease may begin in the womb.
Wednesday, May 14, 2014
Salk Institute and Stanford Lead New $40M Stem Cell Genomics Center
Collaborative research center will bridge genomics and stem cell projects to find new therapies.
Sunday, February 02, 2014
Researchers Chart Epigenomics of Stem Cells That Mimic Early Human Development
Collaborative study will help overcome hurdles to using stem cells to treat diseases and injuries.
Friday, May 10, 2013
Salk Institute Awarded Historic $42 Million Grant to Establish Center for Genomic Medicine
World-renowned research facility receives largest single donation in its 53-year history.
Thursday, January 24, 2013
Salk Scientists Develop Faster, Safer Method for Producing Stem Cells
The new method boosts cell yields and increases safety, helping to get another step closer to regenerative medicine.
Friday, December 07, 2012
Salk Scientists Pinpoint Key Player in Parkinson's Disease Neuron Loss
Stem cell study may help to unravel how a genetic mutation leads to Parkinson's symptoms.
Tuesday, October 23, 2012
Reprogramming Signature may help Overcome Barriers to Regenerative Medicine
Salk scientists show nine genes at heart of epigenetic changes in induced pluripotent stem cells.
Friday, September 21, 2012
Scientists Identify Gene Crucial to Normal Development of Lungs and Brain
Scientists at the Salk Institute for Biological Studies have identified a gene that tells cells to develop multiple cilia, tiny hair-like structures that move fluids through the lungs and brain. Discovery may lead to new ways to replace damaged lung tissues.
Friday, January 13, 2012
Editing Scrambled Genes in Human Stem Cells may Help Realize the Promise of Combined Stem Cell-gene Therapy
Researchers at the Salk Institute successfully edited a diseased gene in patient-specific induced pluripotent stem cells as well as adult stem cells.
Tuesday, May 24, 2011
Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!