Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cells Reprogrammed on the Computer

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
Scientists have developed a model that makes predictions from which differentiated cells– can be very efficiently changed into completely different cell types.

This can be done entirely without stem cells. These computer-based instructions for reprogramming cells are of huge significance for regenerative medicine. The LCSB researchers present their results today in the prestigious scientific journal “Stem Cells”. This is the first paper based solely on theoretical, yet practically proven, results of computational biology to be published in this journal. (DOI: 10.1002/stem.1473)

All cells of an organism originate from embryonic stem cells, which divide and increasingly differentiate as they do so. The ensuing tissue cells remain in a stable state; a skin cell does not spontaneously change into a nerve cell or heart muscle cell. “Yet the medical profession is greatly interested in such changes, nonetheless. They could yield new options for regenerative medicine,” says Professor Antonio del Sol, head of the Computational Biology group at LCSB. The applications could be of enormous benefit: When nerve tissue becomes diseased, for example, then doctors could take healthy cells from the patient’s own skin. They could then reprogram these to develop into nerve cells. These healthy nerve cells would then be implanted into the diseased tissue or even replace it entirely. This would treat, and ideally heal, diseases such as Parkinson’s disease.

The techniques for cell programming are still in their infancy. Stem cell researchers Shinya Yamanaka and John Burdon received the Nobel Prize for converting differentiated body cells back into stem cells only last year. The first successful direct conversion of skin cells to nerve cells in the lab was in 2010. Biologists add refined cocktails of molecules, i.e. growth factors, to the cell cultures in a certain order. This allows them to control the genetic activity in the conversion process. However, this method so far has been largely guided by – educated – trial and error.

Variable jumping between different cell lines is possible

Now, the LCSB researchers have replaced trial and error with computer calculations, as computer scientist and PhD student at LCSB Isaac Crespo explains: “Our theoretical model first queries databases where vast amounts of information on gene actions and their effects are stored and then identifies the genes that maintain the stability of differentiated cells. Working from the appropriate records, the model suggests which genes in the starting cells need to be switched on and off again, and when, in order to change them into a different cell type.”

“Our predictions have proved very accurate in the lab,” says Professor del Sol: “And it turns out it makes no difference at all how similar the cells are. The models work equally well for cell lines that have only just branched off from one another as for those that are already very far apart.” Prof. del Sol’s and Crespo’s model thus allows highly variable jumping between very different cell types without taking a detour via stem cells.

The biologists and medical scientists still have their lab work cut out for them: They have to identify all the growth factors that initiate the respective genetic activities in the correct, predicted order.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Clues For Early Colorectal Cancer Detection
Study identifies new biomarkers which could help detect colorectal cancer.
Monday, October 13, 2014
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!