Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Develop Efficient Model for Generating Human Stem Cells

Published: Wednesday, August 07, 2013
Last Updated: Wednesday, August 07, 2013
Bookmark and Share
Approach has potential to simplify generation of iPSCs for use in human stem cell therapies.

Researchers at the University of California, San Diego School of Medicine report a simple, easily reproducible RNA-based method of generating human induced pluripotent stem cells (iPSCs) in the August 1 edition of Cell Stem Cell. Their approach has broad applicability for the successful production of iPSCs for use in human stem cell studies and eventual cell therapies.

Partially funded by grants from the California Institute for Regenerative Medicine (CIRM) and the National Institutes of Health (NIH), the methods developed by the UC San Diego researchers dramatically improve upon existing DNA-based approaches – avoiding potential integration problems and providing what appears to be a safer and simpler method for future clinical applications.

The generation of human iPSCs has opened the potential for regenerative medicine therapies based on patient-specific, personalized stem cells.  Pluripotent means that these cells have the ability to give rise to any of the body’s cell types.  The human iPSCs are typically artificially derived from a non-pluripotent adult cell, such as a skin cell.  They retain the characteristics of the body’s natural pluripotent stem cells, commonly known as embryonic stem cells.  Because iPSCs are developed from a patient’s own cells, it was first thought that treatment using them would avoid any immunogenic responses.  However, depending on methods used to generate such iPSCs, they may pose significant risks that limit their use.  For example, using viruses to alter the cell’s genome could promote cancer in the host cell.

Methods previously developed to generate integration-free iPSCs were not easily and efficiently reproducible. Therefore, the UC San Diego researchers focused their approach on developing a self-replicating, RNA-based method (one that doesn’t integrate into the DNA) with the ability to be retained and degraded in a controlled fashion, and that would only need to be introduced once into the cell.

Using a Venezuelan equine virus (VEE) with structural proteins deleted, but non-structural proteins still present, the scientists added four reprogramming factors (OCT4, KLF4, SOX2 with either c-MYC or GLIS1). They made a single transfection of the VEE replicative form (RF) RNA into newborn or adult human fibroblasts, connective tissue cells that provide a structural framework for many other tissues.

“This resulted in efficient generation of iPSCs with all the hallmarks of stem cells,” said principal investigator Steven Dowdy, PhD, professor in the UC San Diego Department of Cellular & Molecular Medicine. “The method is highly reproducible, efficient, non-integrative – and it works.”

Dowdy added that it worked on both young and old human cells.  He explained that this is important since – in order to be used therapeutically in fighting disease or to create disease models for research – iPSCs will need to be derived from the cells of middle-aged to old adults who are more prone to the diseases scientists are attempting to treat.   In addition, reprogramming factors can be easily changed.

Additional contributors to the study include lead scientist Naohisa Yoshioka, Edwige Gros, Hai-Ri Li, Shantanu Kumar, Dekker C. Deacon, Cornelia Maron, Alysson R. Muotri, Neil C. Chi, Xiang-Dong Fu, and Benjamin D. Yu, all from the University of California, San Diego.

The study was supported by CIRM, NIH #U01HL107442, the Department of Defense, and the Howard Hughes Medical Institute.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Anti-Leukemia Drug May Also Work Against Ovarian Cancer
An antibody therapy already in clinical trials to treat chronic lymphocytic leukemia (CLL) may also prove effective against ovarian cancer – and likely other cancers as well.
Wednesday, November 19, 2014
New Blood: Tracing the Beginnings of Hematopoietic Stem Cells
Researchers uncover earliest clues yet to development of cells that produce all adult blood cells.
Monday, August 18, 2014
New Reprogramming Method Makes Better Stem Cells
Researchers have shown for the first time that stem cells created using different methods produce differing cells.
Friday, July 04, 2014
Biologists Discover Solution to Problem Limiting Development of Human Stem Cell Therapies
An effective strategy that could prevent the human immune system from rejecting the hESCs derived grafts.
Tuesday, January 07, 2014
Scientific News
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Scientists Sequence Genome Of Worm That Can Regrow Body Parts
Worm’s genome could lead to better understanding of its regenerative prowess and advance stem cell biology.
Stem Cell-Derived 'Organoids' Help Predict Neural Toxicity
A new system developed by scientists may provide a faster, cheaper and more biologically relevant way to screen drugs and chemicals that could harm the developing brain.
New Way To Repair Nerves
Tufts University biomedical engineers recently published the first report of a promising new way to induce human mesenchymal stem cells to differentiate into neuron-like cells:treating them with exosomes.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Filling A Void In Stem Cell Therapy
A new porous hydrogel could boost the success of stem-cell-based tissue regeneration.
Diabetes Research Institute's First Patient In Biohub Trial No Longer Requires Insulin Therapy
New transplant technique restores natural insulin production in type 1 diabetes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos