Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Generated with Oct4 Cannot Form a Complete Organism

Published: Wednesday, August 21, 2013
Last Updated: Wednesday, August 21, 2013
Bookmark and Share
Researchers at the Max Planck Institute for Molecular Biomedicine have demonstrated that an egg cell does not require Oct4 to develop into a complete organism.

Somatic cells have already assumed specific tasks through differentiation, but they can be reprogrammed into “all rounders”: by using only four factors, a specialised somatic cell can thus regain its ability to form any type of cell (pluripotency). One of those factors is Oct4. Scientists from Hans Schöler’s team at the Max Planck Institute for Molecular Biomedicine in Münster have now been able to demonstrate that an egg cell does not require Oct4 to develop into a complete organism (totipotency). This means that reprogramming cells to make them pluripotent by using the four factors, including Oct4, and reprogramming an egg cell through fertilisation or cloning are significantly different processes.

For quite some time, scientists have ascribed Oct4 an important role in early embryonic development—after all, the protein is present in the egg cell. To study the role of Oct4 in the transition from totipotency to pluripotency, the Max Planck researchers had to deactivate Oct4 in the egg cell. To do this, they used a genetically modified mouse model in which the protein Oct4 was eliminated only in the egg cells. “Contrary to the established premise that Oct4 is crucial for the early embryonic stages of development, the mice without Oct4 were as fertile as those with Oct4,” according to Guangming Wu, first author of the study. “In other words, it was still possible to activate the totipotency of the fertilised egg cells, as in normal fertilisation,” he adds.

Another established assumption was that the fate of the cells in the early embryo is decided by the balance between the protein Oct4 and its antagonist, the protein Cdx2. According to this assumption, Oct4 would turn the cells into embryoblast cells, from which the foetus would later form. Cdx2, on the other hand, would transform the cells into trophoblasts, a subsequent part of the placenta. Consequently, without Oct4, there would be an empty trophoblast envelope. The researchers found that despite the elimination of Oct4, an embryo with an embryoblast formed. However, the cells quickly lost their pluripotency. Wu explains, “There must therefore be other factors that determine the fate of the cells in the early embryo. Identifying the factors that are decisive for embryonic cloning and pluripotency will be the subject of future research.”

In 2009, Hans Schöler and his team demonstrated that certain somatic cells could be reprogrammed into stem cells by using Oct4 alone. Scientists hope that they will be able to use such induced pluripotent stem cells to better study diseases without requiring human embryos to harvest stem cells. “Our study shows that cloning leads to totipotency with or without Oct4, while reprogramming cells for pluripotency is not possible without Oct4,” Hans Schöler explains. “The two types of reprogramming are fundamentally different. This is also an important finding with regard to the Embryo Protection Act. If these two processes were to involve the same mechanisms, there could be totipotent cells among the induced pluripotent stem cells generated with Oct4, in which case the Embryo Protection Act would apply.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Microbiome Impacts Tissue Repair, Regeneration
Researchers at the Stowers Institute have established a definitive link between the makeup of the microbiome, the host immune response, and an organism’s ability to heal itself.
New Hope for Zika Treatment Found in Large-Scale Screen of Existing Drugs
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Challenging Stem Cell Fate Control
Researchers have found that the fate of stem cells is not only controlled by their local niche, but also by a cell-intrinsic mechanism.
Zika Proteins Responsible for Microcephaly Identified
Researchers have undertaken the first study to examine Zika infection in human neural stem cells from second-trimester fetuses.
Heart Muscle from Stem Cells Aid Cardiovascular Medicine
Researchers discover heart muscle cells from stem cells mirror expression patterns of key genes in donor tissue.
Examining New Hypotheses for Undiagnosed Patients
UnDx Consortium gathers in San Diego to create new paths to identifying currently undiagnosed illnesses.
Novel Therapeutic Approach for Blood Disorders
Gene editing of human blood-forming stem cells mimics a benign genetic condition that helps to overcome sickle cell disease and other blood disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!