Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Generated with Oct4 Cannot Form a Complete Organism

Published: Wednesday, August 21, 2013
Last Updated: Wednesday, August 21, 2013
Bookmark and Share
Researchers at the Max Planck Institute for Molecular Biomedicine have demonstrated that an egg cell does not require Oct4 to develop into a complete organism.

Somatic cells have already assumed specific tasks through differentiation, but they can be reprogrammed into “all rounders”: by using only four factors, a specialised somatic cell can thus regain its ability to form any type of cell (pluripotency). One of those factors is Oct4. Scientists from Hans Schöler’s team at the Max Planck Institute for Molecular Biomedicine in Münster have now been able to demonstrate that an egg cell does not require Oct4 to develop into a complete organism (totipotency). This means that reprogramming cells to make them pluripotent by using the four factors, including Oct4, and reprogramming an egg cell through fertilisation or cloning are significantly different processes.

For quite some time, scientists have ascribed Oct4 an important role in early embryonic development—after all, the protein is present in the egg cell. To study the role of Oct4 in the transition from totipotency to pluripotency, the Max Planck researchers had to deactivate Oct4 in the egg cell. To do this, they used a genetically modified mouse model in which the protein Oct4 was eliminated only in the egg cells. “Contrary to the established premise that Oct4 is crucial for the early embryonic stages of development, the mice without Oct4 were as fertile as those with Oct4,” according to Guangming Wu, first author of the study. “In other words, it was still possible to activate the totipotency of the fertilised egg cells, as in normal fertilisation,” he adds.

Another established assumption was that the fate of the cells in the early embryo is decided by the balance between the protein Oct4 and its antagonist, the protein Cdx2. According to this assumption, Oct4 would turn the cells into embryoblast cells, from which the foetus would later form. Cdx2, on the other hand, would transform the cells into trophoblasts, a subsequent part of the placenta. Consequently, without Oct4, there would be an empty trophoblast envelope. The researchers found that despite the elimination of Oct4, an embryo with an embryoblast formed. However, the cells quickly lost their pluripotency. Wu explains, “There must therefore be other factors that determine the fate of the cells in the early embryo. Identifying the factors that are decisive for embryonic cloning and pluripotency will be the subject of future research.”

In 2009, Hans Schöler and his team demonstrated that certain somatic cells could be reprogrammed into stem cells by using Oct4 alone. Scientists hope that they will be able to use such induced pluripotent stem cells to better study diseases without requiring human embryos to harvest stem cells. “Our study shows that cloning leads to totipotency with or without Oct4, while reprogramming cells for pluripotency is not possible without Oct4,” Hans Schöler explains. “The two types of reprogramming are fundamentally different. This is also an important finding with regard to the Embryo Protection Act. If these two processes were to involve the same mechanisms, there could be totipotent cells among the induced pluripotent stem cells generated with Oct4, in which case the Embryo Protection Act would apply.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
Rapid Generation from Stem Cells
Researchers coax human stem cells to rapidly generate bone and heart muscle by directing stem cells down complex developmental pathways.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!